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Abstract

Corruption requires a coalition to form and reach an agreement. Is there a cheap
way to stop any agreement from being reached? We find an optimal mechanism that
resembles Poker. The players’ hands are synthetic asymmetric information, and they
create a lemons problem in the market for bribes. Our Poker mechanism is robust:
it thwarts bribes regardless of the negotiation procedure, including alternating offers
bargaining, Dutch auctions and arbitration. In compliance settings, there is a trade-off
between rewarding the agent for honesty and punishing him for non-compliance. This
trade-off is resolved by rigging the Poker hand distribution against the agent and in
favour of the monitor. Finally, the cost of deterring bribes is inversely proportional to

the number of monitors.
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1 Introduction

Across many domains, insiders and experts claim that institutions are vulnerable to ingenious
corrupt schemes that are profitable and elude scrutiny. Butler (1935) and Wheeler et al.
(2011) argue that military decisions are compromised by arms contractors, who provoke and
prolong wars and sell expensive and impractical weapons. Barofsky (2012) and Admati and
Hellwig (2024) argue that financial regulation is dominated by bankers. van der Kolk (2015)
argues that the way psychiatric conditions are classified, diagnosed, and treated is dominated
by the pharmaceutical industry, so that more effective non-pharmaceutical treatments are
sidelined from research and practice. Herman and Chomsky (1988) argue that the media
primarily publishes propaganda, due to influence from owners and advertisers (and other
“filters”). Beck (2000) argues that both public and private law enforcement have often
been corrupted in the US and the UK, especially through sham out of court settlements. If
military discipline, the invisible hand, academia, the media, and law enforcement are unable
to withstand—and be seen to withstand—corruption, this raises the question of whether any
institutional design can do so.

Recent research shows how the joint design of information and transfers can produce
information frictions, such as adverse selection or screening, that prevent would-be corrupt
players from cutting a deal (Ortner and Chassang, 2018; Baliga and Sjostrom, 1998; von
Negenborn and Pollrich, 2020). Specifically, these authors show how a principal can cleverly
design endogenous frictions to reduce the cost of deterring an agent from bribing a monitor
to hide evidence, sometimes even to zero. Unfortunately, the practical application of the
proposed mechanisms is limited by the fact that they either require the monitor to perfectly
observe the agent’s type or action, and/or the designer to be able to select her preferred
equilibrium, and/or the players to have infinitely large budgets. Moreover, they consider
neither the benefits of giving private information to both the agent and the monitor, nor
whether their mechanisms can be extended to more than two players.

We propose a mechanism that overcomes these limitations and resembles the well-known
game of Poker. In Poker, players with poor hands are more inclined to fold because they
anticipate that any player who chooses to raise must have a better hand. This adverse
selection or “lemons” effect causes play to unravel until all hands fold.! We use Poker to
thwart corrupt agreements by sending random secret messages (“hands”) to the agent and

the monitor, and triggering a showdown when the monitor reports evidence against the

IThe fact that one player folds immediately can also be seen by observing that Poker is a zero-sum game,
and both players have an outside option of zero after seeing their hands.



agent. Paying the player with the highest hand a prize commensurate with the gains from
evidence suppression creates a zero-sum game that deters bribes.? Our mechanism improves
on this by introducing a novel handicapping rule: the highest hand wins only if it exceeds
the lower hand by a large enough margin; otherwise nobody wins. Handicapping reduces
the designer’s cost of paying prizes; it continues to block bribe agreements that would be
mutually beneficial, even though the game is no longer zero-sum. Nonetheless, Poker’s
adverse selection effect is strong enough to produce complete unravelling that leads both
players to reject bribes.

Theorem 1 shows that the Poker mechanism is essentially the cheapest mechanism that
blocks all corrupt side contracts, even when the players are assisted by a third party arbitrator
with unlimited liability (as in Laffont and Martimort, 2000).> The proof requires us to
overcome a transfinite induction problem in order to extend an unravelling analysis over a
whole continuum of types. Theorem 2 considers two generalisations of Theorem 1. The
first shows how Rigged Poker resolves the trade-off between rewarding an agent for honesty
and punishing him for non-compliance. The second shows that adding players—such as more
potential whistleblowers—in n-Player Poker lowers the cost of deterring corruption. Apart
from providing a robust way to block corruption, the Poker mechanism partially answers
some questions explored by Carroll (2016) and Brooks and Du (2024, 2025) about how much
surplus from trade can be lost to information frictions, and what information structures
maximise these frictions.

Section 2 describes a simple version of the mechanism, called Constant Handicap Poker,
and how it works to defeat a simple class of corrupt side-contracts. Our focus is on deter-
ring corruption so other aspects of the problem are kept simple. Section 3 formalises the
designer’s problem more generally, and presents our main mechanism, Handicap Poker. Sec-
tion 4 proves that Handicap Poker defeats a broad class of side contracts and is an optimal
solution to the designer’s problem. Section 5 generalises the results to asymmetric n-player
settings. Section 6 clarifies the main contributions compared to previous attempts to solve
this problem, and also to worst-case information design and robust mechanism design. Sec-
tion 7 outlines directions for future research. Throughout the paper we refer to the various

versions of our mechanism generically as “Poker” or “the Poker mechanism”.

2This game is isomorphic to the stylised version of Poker studied by von Neumann and Morgenstern
(1953). Equation (19:21) implies that if b = 0, then both players will choose to “bid low”, which corresponds
to reporting evidence in our game. See Section 4.3.1 for details.

3Technically, there is no optimal mechanism. The Poker mechanism includes a small tie-breaking prize,
and the cost approaches the infimum as this prize converges to zero.



2 A Corruption Problem

Dave, a developer has applied for permission to build a hotel for a profit of £10m. But
Ray, the regulator, is worried that the hotel might disrupt local biodiversity. So Ray hires
an auditor, Anne, to check. We assume that if the hotel is bad, then it is likely (but
not necessarily certain) that Anne finds hard evidence which can be destroyed but not
fabricated.* Ray is also worried that Dave might bribe Anne to destroy the evidence. Ray’s
problem is to find the cheapest way to deter bribes. Ray’s first thought is a trivial mechanism
that rewards Anne with £10.1m for evidence. Dave would not offer Anne a bribe, because
he would have to spend more than his profit of £10m. But this is expensive: Ray has to
pay out £10.1m whenever Anne produces evidence. Is there a cheaper solution, assuming
limited liability for Anne and Dave?

We propose a new mechanism that resembles Poker. Ray deals cards and pays card-
contingent prizes to Anne and Dave, which creates synthetic asymmetric information.® This
frustrates bargaining between Anne and Dave by making them unsure of each other’s bar-
gaining positions, and creates a lemons market in the market for bribes with complete market
failure. We prove that all negotiation procedures end in failure, including take it or leave
it offers, alternating offers like Rubinstein (1982), double auctions, mediation, arbitration,
and so on. And we prove that the mechanism is optimal. Any mechanism that deters bribes
costs at least as much.

In the remainder of this section, we use Constant Handicap Poker to illustrate how our
mechanism creates a two-sided adverse selection problem. We further simplify matters by
beginning with a pure casino version of the game that ignores the distinct roles of the players

by treating them symmetrically.

4We make the simplifying assumption that it costs nothing to destroy evidence. Our mechanism still works
if destroying evidence is costly, but it can be made cheaper by deducting the cost of destroying evidence
from the prizes. Section 5 discusses an extension of our mechanism that can accommodate evidence that
can be fabricated, provided fabrication is costly enough.

5In this paper, cards are a metaphor for messages sent by the designer. Our assumption that the gov-
ernment can credibly commit to send messages according to a contractually declared distribution and make
payments contingent on those cards is standard in the literature on mechanism and information design. See
Section 6 for examples. Major casinos maintain credibility by using certified algorithms and undergoing
regular inspections by gaming commissions. Attar et al. (2025) describe a method for using smart contracts
to send private messages and react to private reports.



The Constant Handicap Poker mechanism, casino version

1. The house deals the players their hands x; and x5 independently and uniformly
from [0, 1].

2. If the players can agree how to split a prize of size II, then the Casino pays the
split and the game ends.

3. Otherwise, play proceeds to showdown:

(a) All cards are placed on the table facing up.
(b) Player 1 wins IT + ¢ if 121 > x5, and similarly for player 2.

(¢) Otherwise, nobody wins.

In normal Poker, a player wins if they have the better hand, which happens with probability

1/2. Our Poker mechanism handicaps the higher player’s hand by multiplying it by 1/2. As

a result, each player wins with probability 1/4, and nobody wins with probability 1/2. The

quantity € > 0 is necessary only for breaking indifferences. Ray the regulator employs the

Poker mechanism as follows:

The Constant Handicap Poker mechanism, Ray’s version

1. Ray deals Anne and Dave their hands x; and =5 independently and uniformly
from [0, 1].

2. If Anne fails to find evidence, or if Dave successfully bribes Anne to hide it, then

the hotel is approved and the game ends.

3. Otherwise, Anne shows her evidence, the hotel is denied, and play proceeds to
showdown:
(a) All cards are placed on the table facing up.
(b) Ray pays Anne £10.1m if $21 > 25, and similarly for Dave.

(c¢) Otherwise, Ray pays nothing.

In Ray’s version of the Constant Handicap Poker mechanism, if Anne finds evidence, we

will show that play always proceeds to showdown. Due to the handicapping, the mechanism

pays out only %x£10.1m = £5.05m, which is half as much as the trivial mechanism.



There are a few superficial differences between the casino and regulator version of Con-
stant Handicap Poker. First, in the regulator version, the negotiation stage prize is not a
transfer; it is earned directly by Anne and Dave ferom illicit hotel profits. This difference
does not matter, because we will prove that the negotiation stage prize is never claimed, so
it does not matter who pays it.

Second, in the regulator version, showdown is triggered by Anne revealing evidence or
by the developer withdrawing the application, not just a negotiation failure. This difference
just reflects the fact that the hotel is approved unless evidence is revealed. Showdown is
triggered once the regulator knows that permission to build the hotel will be refused, because
he knows that Anne and Dave did not form a coalition.

Third, in the regulator version, a deal may be impossible because Anne does not find any
evidence to destroy. This means a prize is more likely to be awarded in the casino version.
This creates a difference in accounting, but not incentives.

Fourth, the casino version is symmetric for both players.

Since these differences are inconsequential and the casino version is simpler, we focus on
the casino version with prize II =£10m and tie-breaker ¢ =£0.1m.

A lemons problem. In Constant Handicap Poker, the showdown handicapping rule
means that a prize is awarded only half of the time. This means that the negotiation stage
prize is £10m, whereas the showdown stage prize is only £5.05m on average. So the players
have much to gain from negotiating a deal.

But we show that Constant Handicap Poker creates a lemons problem. We prove that
for every exogenous split of £10m, in every equilibrium the players reject the split almost
surely. This is a weak result, because of the limited scope for negotiation. In fact, we will
only illustrate how negotiations unravel when the players can only choose to accept or reject
a 50-50 split of £10m. We resolve this in Section 4 when we prove that Handicap Poker
deals with all possible negotiation procedures.

Despite the simple accept/reject choice, the strategy spaces are large because there are
so many possible hands. But notice that the best response to any strategy is a cut-off rule,
with strong hands rejecting the 50-50 split because they have a high chance of winning a
showdown. This reduces the strategy space to a single number. We begin with a cut-off of
1 (always accept).

Suppose player 2 always accepts, and player 1 has the best possible hand of one. If
player 1 accepts the split, he receives £5m. If he rejects the split, he wins the resulting

showdown half of the time, and receives £5.05m in expectation. So he rejects the split and
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Figure 1: Unravelling of the market for bribes.

forces a showdown. Similarly, player 1 rejects if his hand is better than 10/10.1 ~ 0.991 and
player 2 does too. Thus, players with hands better than 0.991 leave the negotiating table.
In Figure 1a, the shaded area shows the remaining hands.

It turns out that the next round of deletion is similar. Suppose player 2 accepts if his
hand is 0.991 or worse, and player 1’s hand is exactly 0.991. This is no longer the best
possible hand. But it is the best possible hand still at the negotiating table. So player 1
conditions his choice on x5 < 0.991, i.e. on playing against a hand that is at the negotiating
table. If player 1 accepts the split, he receives £5m, as before. If he rejects the split, he wins
a showdown half of the time, and he receives £5.05m in expectation. He therefore rejects
the deal too. Like before, players with hands better than 0.9912 reject the split, and leave
the negotiating table. In Figure 1b, the shaded area shows the remaining hands.

The unravelling continues until all hands reject the 50-50 split. We conclude that Con-
stant Handicap Poker deters the players from accepting a 50-50 split. The logic is similar
for other exogenous splits, e.g. 40-60.

The unravelling process resembles Akerlof’s (1970) analysis of “lemons” markets. But
the two-sided nature of Constant Handicap Poker means that we do not trace a path of
decreasing prices as the quality becomes more diluted. Instead, we keep the price fixed (50-

50 split), and trace the dwindling set of hands that agree to a deal. Another similarity is the



nature of a “lemon”. The crux of a lemons market is that one player wants to cut a deal the
most when the other player benefits the least. In Constant Handicap Poker, a weak hand
is likely to lose a showdown, so a deal is attractive. But a weak hand for one player means
that the other player is more likely win a showdown, so he benefits the less from a deal.

How might the players try to cheat the mechanism? The easiest way would be to reveal
their cards to one another. The house can prevent this by giving the players a deck of fake
cards. This way, even though Anne might reveal her true card to Dave, she would not be
credible since Dave can never be sure that she has shown her true hand, and not a fake.

Another way to cheat would be to commit not to look at their own hands. This would
undo the lemons problem. A player with a strong hand would no longer know that he would
have a high chance of winning a showdown. So the unravelling would never get started.
Thus the house must insist that the players look at their hands.

Similarly, the players would also like to promise to refuse their showdown prizes. This
would force the players to collect negotiation stage prizes instead, which are larger. To
prevent this, the house must insist that the players take their showdown prizes home securely.

Other side contracts. There is a large literature (surveyed by Tirole, 1993) about
corruption with various bargaining procedures. Laffont and Martimort (1997, 2000) point
out that the proposed mechanisms are highly sensitive to the assumed bargaining procedure.
They argue that good institutions for deterring collusion and corruption ought to withstand
any form of negotiation.

Does Constant Handicap Poker deter all other forms of negotiation beyond accepting or
rejecting an exogenous split? The answer is no. If the players enlist the help of the mafia to

enforce a side contract, they can extract all of the prize money between them.

Win-or-split side contract
1. The mafia pays the players £1m each.
2. The players tell the mafia their hands, z; and x,.

3. If neither player has a winning hand (neither %:L’l > 9 NOr %l’g > 1), then the
mafia advises the players to agree to split and give the money to the mafia. The

mafia gets £10m and the players get £0.

4. If either player has a winning hand, then the mafia advises them to proceed to

showdown. The winner gets £5.1m, the loser and the mafia get £0.




Under the mafia’s win-or-split side contract, either one player wins a showdown, or they
agree to a split. So the casino always awards a prize. Win-or-split is incentive compatible
because neither player can benefit from misreporting their hands: initiating extra showdowns
is useless because no extra prizes would be awarded; initiating fewer showdowns is useless
too because players get no extra money from splitting. It is individually rational because it
gives the players a £1m fixed payment in addition any prize they would win if they rejected
the contract. The mafia makes a profit of £% x 10 —2 = 3m, and each player receives 1+ % X
£10.1m = £3.525m on average. Together, the two players and the mafia extract £10.05m,
which is all of the prize money on the table. We conclude that the win-or-split side contract
defeats the Constant Handicap Poker mechanism. We need a better mechanism.

Handicap Poker. Constant Handicap Poker was vulnerable to the win-or-split side
contract because the mafia was able to predict when a showdown would be successful. We
propose Handicap Poker, which adds an extra layer of randomness to thwart this. Specifi-
cally, instead of a fixed handicap of %, the handicap is drawn uniformly from [0, 1]. In Poker

terminology, the handicap is a community card, as appears in Hold’em varieties of Poker.
The Handicap Poker mechanism, casino version

1. The house deals the players their hands x; and x5 independently and uniformly
from [0, 1]. The house also draws a community card independently and uniformly

from [0, 1], and places it face down on the table.

2. If the players can agree how to split a prize of size II, then the Casino pays the
split and the game ends.

3. Otherwise, play proceeds to showdown:

(a) All cards are placed on the table facing up.
(b) Player 1 wins Il + ¢ if yz; > x5, and similarly for player 2.

(c¢) Otherwise, nobody wins.

As before, nobody wins during showdown 50% of the time, so Handicap Poker costs the same
£.5.05m as Constant Handicap Poker.

What is the fundamental difference between Constant Handicap Poker and Handicap
Poker? The answer lies in the information frictions. Constant Handicap Poker creates a
pure adverse selection problem. If the players can only accept or reject an exogenous split,

then Constant Handicap Poker ensures that no matter which hands decide to agree, some of



their participation constraints are violated. However, the win-or-split side contract solves the
adverse selection problem. The mafia helps by aggregating information. It gives the surplus
back to the players, and thus satisfies all of the participation constraints. And the players
have no incentive to lie to the mafia about their hands, because the mafia lets the players
keep all of the (potential) showdown prizes. The discrete win rule in Constant Handicap
Poker aids the mafia by producing a steep (indeed, discontinuous) change in player i’s payoff
at the threshold 2z_;. This sudden jump makes it risky for a player with a low hand to
“bluftf” the mafia by reporting a high hand: if the threshold lies between the true hand and
the report, then the mafia will “call i’s bluff” by triggering a showdown, and ¢ will lose with
certainty. The fact that small bluffs can have big payoff consequences makes it easy for the
mafia to screen the players. i By contrast, the random handicap in Handicap Poker means
that i’s expected payoff changes continuously (hence more gradually) in her hand, which
facilitates bluffing. If the mafia were to propose the same win-or-split side contract during
a Handicap Poker game, then a player with any hand (except 0) would try to trick the
mafia into a showdown by pretending to have the best possible hand. Showdown is strictly
better than agreeing to a split because every hand has a strictly positive chance of winning.
Consequently, the mafia can no longer screen players costlessly; they must grant information
rents to elicit truthful reporting.

The following sections formalise this argument and prove that Handicap Poker is optimal.

3 Model

There is one designer, one mafia, and two players, i = 1,2 (see Section 5 for an n-player
extension). All players are risk neutral.% At the interim stage, the mafia will try to facilitate
an agreement between the players. If the players reach an agreement, then they collectively
get a surplus of II = 1. In the context of the corruption problem of Section 2, this means
that they destroy the evidence and obtain planning permission. The players’ outside options
from reaching agreement are determined by the designer’s choice of mechanism in the first

stage.

6Risk aversion can be a problem for our mechanism because it makes the certainty of bribes relatively
more attractive than the uncertainty of the showdown payoffs. However, if the players’ transfers for not
reporting evidence are also endogenous, then they can be used as a source of variation, instead of their
transfers for reporting evidence. Doing so reverses the effects of risk aversion, since reporting evidence
becomes the less risky action. Alternatively, the designer can compensate the players for their risk premium
by increasing the showdown transfers.

10



Definition 1. A mechanism M = (X,Y, 3, P,t) consists of:

a set of possible message profiles X = X; x Xy, where X; is the set of messages that

the designer can send to player ¢ = 1,2, and

a set of community messages, Y, that can determine payoffs but are not observed by

any player.

a o-algebra, >, on X x Y.

a probability measure P : ¥ — [0,1] over X x Y.

a pair of transfer functions t = (1, t2), where each function ¢; : X x Y — R, specifies
the transfers from the designer to player 7, in the event that the players fail to reach

an agreement.
If the players do reach an agreement, then the designer pays them nothing.

The community message set Y is not strictly necessary, since we can replace the transfer
functions with their expectation over Y without affecting the players’ incentives. We include
it only because our Poker mechanism is more neatly described this way. At times, it will be
convenient to write transfers without the community messages as t;(z) = {, t;(z,y) dPy (y).

Our requirement that transfers be positive embodies an assumption that the players have
binding limited liability constraints, which we normalise to zero.”

Mechanisms must also satisfy the following technical properties:
1. The transfers t; are ¥-measurable, i.e. pre-images of Borel sets are Y-measurable.

2. Y is a product of o-algebras ¥J; that contain subsets of X;, and >y that contains subsets

of Y.

3. P is absolutely continuous with respect to the product measure Py, x Px, x Py, where
Py, : ¥; — [0,1] is player ’s marginal distribution, and Py : ¥y — [0,1] is the
marginal distribution on Y. It is also convenient to define X x to be the projection of

> on X and Pyx to be the marginal distribution on X.

7If one or other of the players has unlimited liability, then the designer can deter corruption for free using
a mechanism of the type described in Appendix C.

11



4. There exist conditional probability distributions Py_,x, for every player i.8

5. Player i’s expected transfer exists and equals

Wi(e:) jX () APy o). (1)

Once the designer has specified a mechanism, the mafia proposes a side contract to help
the players reach agreement. We make the conservative assumption that the mafia can
commit to enforce side contracts and can do partial implementation, i.e. the mafia succeeds
in executing a bribe if one of the equilibria is successful. This has two advantages. First,
it ensures that the designer’s mechanisms are robust to a wider range of side contracts.
Second, it means that the revelation principle applies: the mafia can partially implement
any outcome of any negotiation procedure or side contract (such as Rubinstein bargaining,
double auctions, and arbitration), in a truth-telling equilibrium of an equivalent direct side
contract. Hence, there is no loss of generality in restricting attention to direct side contracts.
The mafia does this by promising to simulate the players’ strategies on their behalf. This
promise amounts to an allocation rule (when should the players agree to a split), and transfers

(“bribes”), as a function of the players’ hands.
Definition 2. A direct side contract S = (a,b) against M consists of

« a Y-measurable agreement rule a : X — [0, 1] that specifies the probability of agreeing

a split for each message profile x reported by the players; and

« a pair of ¥-measurable bribe functions b; : X — R that specifies the (possibly negative)
bribe that the mafia pays the players for each message profile x.

If both players accept the side contract, then they make reports x; and x5 to the mafia
and receive by(x) and by(x). With probability 1 — a(x), the mafia tells the players to reject
agreement and collect transfers ¢; from the designer. Then, with probability a(x), the mafia
tells the players to accept a split of the prize. Rather than explicitly specify which split they
accept, we follow Myerson (1981) by assuming that money from the split is paid directly to

8Dudley (2002, page 343) defines Px_, x, to be a conditional probability distribution if (i) for each
r; € Xi, Px_,x,(-|zs) is a probability measure on (X_;,X_;), (ii) for each A_; € X_;, the function
i = Px_,x,(A_i|z;) is X;-measurable from X; into R, and (iii) for each A = A; x A_; € Xy,
P(A) = SAi, Px_,1x,(A_i|z;) dPx,(z;). By Dudley (2002, Theorem 10.2.1), these conditions ensure that

§9(z)dP(z) = §§g(xi, 2 i) dPx_, x, (v —ilx;) dPx, (2;).

12



the mafia and redistributed according to the b; functions. We only consider side contracts

in which the players can calculate their expected payoffs, i.e.

Vi(wi, ) := f [(1 = aleg, z-i))ti(x, y) + bi(wg, i)l dPx_x, (i yle)  (2)

X,iXY

must exist for all messages x; and all reports «. If player ¢ declines to participate in the side

contract, he receives W;(x;) from the designer’s mechanism.

Definition 3. Given a mechanism M, a direct side contract S is feasible if it satisfies all of

the following constraints:

1. (Side incentive) Each player ¢ maximises their payoff by truthfully reporting their

private message to the mafia, i.e. for all z; € X;,

Vi, i) = Wi(w;) := max Vi(w;, 7). (SI)

Ty

2. (Side player participation) Each player 7 prefers to accept the side contract

3. (Side mafia participation) In expectation, the mafia does not lose money, i.e.

- L o(x) APy (x) — L [y () + bo(x)] dPx(z) = 0. (SMP)

4. (Side surplus) There is a strictly positive surplus so that the side contract Pareto

dominates non-participation, i.e.

L Z [Wi(z:) — Wi(z;)] dPx(z) + 7 > 0. (SS)

1€{1,2}

A mechanism M blocks a side contract S if S is not feasible.

The left side of the mafia participation constraint comes from the fact that the players
generate a combined project profit of 1 when they reach an agreement, which happens with
probability a(z). We assume that a feasible side contract must generate strictly positive

surplus in expectation, because innocuous side contracts such as the null side contract need

13



not be blocked. The surplus need not be strictly positive ex post. Requiring the side contract
to generate a strictly positive surplus ex post would only weaken our main result, since it

would no longer guarantee that Handicap Poker is robust to mafias with big budgets.

Definition 4 (The Designer’s Problem). The (unweighted) cost of a mechanism is given
by the expected value of the transfers, (M) 1= >,y , ti(z,y) dP(z,y), where M =
(X,Y, 3, P,t). The designer’s problem is to find the cheapest mechanism that blocks all side

contracts i.e.
ct = i/r\l/lf (M) s.t. M blocks every feasible side contract S. (P1)

In this notation, Handicap Poker with a showdown bonus of ¢, denoted M*(¢) is defined
by Y* = X} = [0,1] for i = 1,2, 3* equal to the set of Lebesgue measurable subsets of [0, 1],
P* is the Lebesgue measure, i.e. uniform IID draws, and ¢} (z,y) = I(yz; = x;)(1+¢), where
I(+) denotes the indicator function. Additionally, it admits multiple strategically equivalent

formulations. We highlight three variants that prove useful for the extensions in Section 5:
o Personal community cards: Y =Y; x Y5 = [0,1]% and t;(z,y) = I(yiz; = z_;)(1 + &).
« No community cards: Y = ¢J and ¢;(x) = max{0,1 — z_;/x;}(1 + ¢).

o General distributions: P is the product of three marginal distributions with invertible
CDFs Fy, Fy and Fy, and t;(x,y) = I(Fy ' (y)F- (o) = F7 () (1 + €).

(2 K3

4 Results

Theorem 1. The infimum cost of blocking side contracts in problem (P1) is c* = % Handicap
Poker with showdown reward € > 0 blocks all feasible side contracts, and its cost approaches

the infimum, i.e. lim._oc(M*(e)) = c*. Each player receives an expected transfer of 11=.

The proof of Theorem 1 has three parts: the first shows that Handicap Poker blocks all

side-contracts when € > 0; the second shows that Handicap Poker’s cost approaches % as

¢ — 0; the third shows that any mechanism that blocks all side contracts costs strictly more

than % The details are given in the remainder of this section.
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4.1 Handicap Poker Blocks All Side Contracts

We follow Myerson’s (1981) classic proof strategy, borrowing improvements from Krishna
(2009). First, we fix an arbitrary (direct) side contract. Second, we apply the envelope
theorem to calculate the player’s values as a function of their hands (Lemma 1). Third, we
calculate the minimal bribes necessary to screen the players’ types for a given agreement
rule (Lemma 2). Finally, we show that these bribes are too expensive for the mafia to make
a profit. In other words, the cost of screening the players exceeds the gains from reaching

an agreement.

Lemma 1. For any feasible direct side contract S = (a,b) to Handicap Poker, the marginal

value of a better hand for a player with hand x; is

VW@0=1+€fﬂ—ﬂ%#@DH%>x4>ymd@4w) 3)

X

The value of hand x; can be calculated as
1
Wite:) = Wi(1) = [ W(s) d, (@)
which has an expected value of
fﬂfi(@) de; = Wi(1) — (1 + ) fu A (> v > ya) dx.y). (5)

Proof. We write the proof for player 1. The proof for player 2 is the same. If player 1 accepts

the side contract, and reports x} when his true hand is x;, then his expected payoftf is

1

1 1
Vi(zy,2)) = J by (2}, x2) dxs —i—f (1-— a(:c’l,a:Q))J I(yxy = x9)(1 + €) dy dxy.  (6)
’ brib ’ howdown? < d

showdown prize

We would like to calculate the marginal value of a better hand. Indicator functions are not

differentiable, so we rewrite Sé I(yxy = z3) dy as max{0,1 — x5/x1}, and player 1’s value as

1 Z1

x

Wit = [ (- aha) (1-2) da (@

bl(l‘ll, LL'Q) d$2 + (1 + S)J
0

0

By Leibnitz rule, the marginal value of a better hand, holding the report to the mafia
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fixed, is

a%vl(xl,xg) = (1+¢)(1— a(a}, ) (1 _ %) (14 e) flu _ a(x'l,xz))(%z dzs (8)
= 1;15 f(l — a2, x3)) {(xl > 1y > ymg d(za,y). (9)

better, but not by enough

If S satisfies player 1’s side incentive constraint, then z; is an optimal choice of x/, so the

envelope theorem implies that the marginal value of a better hand is

_1+€
-

W) = [a%vm,xa)] [0 atwmie > e e dies). (0

’
=71

The value of hand z; then follows from the fundamental theorem of calculus.® Player 1’s

expected payoff is'®

le x1) dry = Wi(1 fJ Lt €J (1 —a(s,x2)) (s = x9 = ys) d(xa,y) ds dx;  (11)
=Wi(1)—(1+¢) J(l —a(x) (21 = 29 = yx1) d(x,y). (12)
]

Lemma 2. For any feasible direct side contract S = (a,b) to Handicap Poker,

Jbl(a:) de > (1+¢) [% — J(l —a(x)(z; = x_;) dx] for each player i = 1,2. (13)

Proof. If S satisfies player 1’s side participation constraint, then Wi (z;) = Wj(x) for all
z1 € [0,1]. For the strongest hand, we have Wi(1) > W;(1) = . Lemma 1 then implies
that

JW1($1) dry = (1 +¢) B — J(l —a(x))(z1 = 29 = y11) d(m,y)] ) (14)

9Notice that Vi (z1,2}) is convex in x1. So Wy is an upper envelope of convex functions and is therefore
also convex. Thus W; is absolutely continuous by (Royden and Fitzpatrick, 1988, Corollary 17), so the
fundamental theorem of calculus (Royden and Fitzpatrick, 1988, Theorem 10) applies.

10We make use of the following fact to simplify the triple integral: If f : [0,1] — R is Lebesgue integrable,

then Sé Si f(s) ds dz = Sé xf(:n) dx. To see this, let g(x,s) = I(s = z)f(s), which is Lebesgue integrable
n [0,1]%. By construction, SOS f(s)dsdx = So SOg x,8)dsdz. By Fubini’s theorem, Sé Sé g(z,s8)dsdx =
SéSég(w,s)dmdSZSo So (s = x) dmdS—SO s)sds.
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The side incentive constraint, together with (6), gives

Wi(zq) = Vi(zr, 1) = Jbl(x) dzy + (1 +¢) J(l —a(x))(yz1 = x2) d(x2,y). (15)

Substituting this into (14) gives a lower bound on bribes paid to player 1, with

Jbl(x) dx (16)
> (1+¢) 5 J(l —a(x){I(x1 = x2 = yx1) + [(yz1 = 22)} d(Ly)] (17)
=(1+2) |5 J(l —a(@){I(z1 > ) — I(yz1 = 1) + I(yz1 > 22)} d(z, y>] (18)

=(1+9) |5~ J(1 —a(@))(z1 = ) dx] : (19)

The same logic applies to player 2. Il

Summing the inequalities in Lemma 2, we find that the mafia’s total transfers to both

players are at least

Jbl(x) do + me) de > (1+¢) Ja(x) dz > Ja(x) de. (20)

If an agreement is reached with positive probability so that §a(z)dz > 0, then the last
inequality is strict, the mafia makes a loss, and would not participate, violating (SMP).

Otherwise, {a(x)dx = 0, and the side contract creates no surplus for the parties, because

| 3 i) - Witz da,y) + 7 @

i€{1,2}
~ [ 310 - atptio) + o) ~ el dw ) + [ o) - ¥ b@)]ds (22)
ie{1,2} ie{1,2}
—0. (23)

This violates the side surplus constraint, (SS). Since the choice of side contract was arbitrary,

we conclude that Handicap Poker deters bribes, regardless of the negotiation procedure.
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4.2 Handicap Poker Costs 1/2

The cost of Handicap Poker with showdown bonus ¢ is straightforward to calculate. Since
§ti(x,y) dy = max{0, 1—xy/21}(1+¢), we get Wi(21) = (1+¢) §;' (1—a2/21) duy = (1+6)%,
l+e

and hence § Wi (z1) day %. There are two symmetric players, so the total cost is ==,

which converges to ¢* = % as ¢ — 0.

4.3 Handicap Poker is Optimal

To prove that Handicap Poker is optimal, this section establishes that any mechanism M =
(X,Y,3,p,t) that blocks all side contracts must cost at least 1/2. Our proof is based on
Carroll (2016)’s theory of contagious infections, which is similar in spirit to Akerlof (1970)
and Rubinstein (1989). The logic involves all types rejecting trade in several rounds.

We begin with two simplifying reformulations. The first is based on the observation that
equal split bribes are the hardest to block; asymmetric splits can be blocked by rewarding
the worse-off player more than their share. We relax the problem to blocking the equal split
bribe only. Second, we introduce a simple bribe game in which players choose whether to
accept or reject the equal split bribe. Lemma 3 establishes that if M is feasible then no
bribes are agreed in any strict equilibrium of the bribe game. This allows us to recast the
blocking constraint in terms of players rejecting bribes in all equilibria, which is simpler than
blocking any conceivable side contract. This setting is now suitable for applying Carroll’s
insights on informationally robust trade.

The second part uses the bribe game to construct lower bounds on the cost of blocking
bribes. If under some beliefs about the other player’s type, a player finds rejecting the
bribe is strictly profitable, then he must expect an even bigger reward from the regulator.
Thus, summing up gains from profitable rejections is isomorphic to summing up the costs
for blocking various types from agreeing on bribes. To avoid double counting, we define
costing sequences of disjoint subsets of X. Each costing sequence traces out a possible order
of contagious infections. The size of a costing sequence is the measure of the union of all
the sets along the sequence. Lemma 4 proves that each set in the sequence has the property
that at least one player’s conditional expected transfer exceeds 1/2. It follows that the cost
of M must exceed 1/2 times the size of the largest costing sequence.

In the final part of the proof, Lemma 5 shows that players reject bribes in every equilib-
rium of the bribe game only if the size of the largest costing sequence is 1, i.e. if all types get
infected. Together with part 2, this implies that M must cost at least 1/2. If X is finite, then
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this is an immediate consequence of Claim 1, which applies Carroll’s (2016, Propositions 3.1
and 3.2) logic to extend any costing sequence that is smaller than 1. Like Carroll (2016), the
proof starts with all types initially accepting bribes, but gradually choosing to reject with
each round of iterated reasoning.

But we do not assume a finite type space. Rather, we modify Carroll’s technique to
accommodate uncountable type spaces. First, Claim 1 costs a positive measure of types
in each round, not just one. Second, Carroll’s proof relies on Nash’s equilibrium existence
theorem. But with uncountable type spaces, the strategy spaces are more complex, so
Claim 1 uses Balder’s (1988) equilibrium existence theorem instead. Third, Claim 2 shows
that costing can be completed in a countable number of rounds, which rules out transfinite

induction problems.

4.3.1 The Bribe Game

In the bribe game of a mechanism, each player receives their message, and chooses a proba-
bility with which to accept the equal split bribe, b; = % If both players accept, then each
1

player gets 5 from the side contract. If either player rejects, then each player gets their

transfer from M.

Definition 5. Given a mechanism M = (XY, ¥, P t), the bribe game of M is defined by a

(behavioural) strategy a; : X; — [0, 1], and an ex ante utility function

Ui(ai, a_i) = J [%al(xl)aQ(xg) + (1 - al(ﬂfl)ag(ﬂfz)) tl(ﬂf)] dpx(l’) (24)
X
for each player i = 1,2. Strategy profile (af,a}) forms a strict (weak) Nash equilibrium in

behavioural strategies if:
« each a} is measurable, i.e. pre-images of Borel sets are XJ; measurable;

« player i is strictly (weakly) better off playing a} than any essentially different!'! strategy
ai, i.e. U(af,a*,) > (=)U;(a}, a*,) for all a; with Px,(x;|a}(z;) # a¥(z;)) > 0.

We need to consider strict equilibria because of our requirement that side contracts
create a strictly positive surplus. Strategies that are the same almost everywhere yield the
same expected utility, so the definition of strict equilibrium is only meaningful if we restrict

attention to essentially different strategies.

HTwo measurable functions are essentially different if they differ on a non-zero measure set.
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Lemma 3. If mechanism M blocks all side contracts, then the corresponding bribe game has
no strict equilibrium (a},a%) in which bribes are accepted with strictly positive probability,
i.e. § af(x1)a3(x2) dPx(x) > 0.

Proof. We prove the contrapositive using the logic of the revelation principle (Laffont and
Martimort, 2000). Suppose (a},a3) is a strict equilibrium of the bribe game of M with
§x ai(x1)a3(xs) dPx(x) > 0. It suffices to show that there exists some side contract (a, b)
that is not blocked by M.

Consider the side contract (&, b) in which the mafia promises to execute the equilibrium
acceptance strategies (af, aj) on the players’ behalf and share the resulting surplus equally,
ie. a(z) = a*(z1)ai(xs) and bi(z) = @ for i = 1,2. By a standard delegation argument,
truthful reporting and participation are weakly optimal for the two players.

The side contract gives the mafia a profit of 0, and a total surplus to the players of

f S [Wilee) — Walw)] dPy () = f S [Us(af (@), 0% (w-1)) — Ui(0, 0%, (5:))] dPx ().
X ie{1,2}

X ief{1,2}

(25)

Since we assumed (af, a}) reaches agreement with strictly positive probability, it is essentially
different from the always-reject strategy 0. We deduce that player ¢ strictly prefers a} over 0,
and that the total surplus is strictly positive. We conclude that M does not block (a, 13) O

4.3.2 Costing Sequences

Definition 6. A finite costing sequence of R rounds is a finite sequence of costed types
(Cy)r<r, where C,. = (Cy,,Cy,) and C;, € X, for all = 1,..., R, that satisfies the following

properties for i = 1, 2:
1. At the start, no types are costed, i.e. Cjo = .

2. Types can only be costed once, i.e. C;, € U;, 4 for all 7 < R, where U, 1 := X;\User 1

C;s is the set of uncosted types in round r — 1.

3. In round r, only one player has any newly costed types, i.e. if Cj, # & then Cj, = &
for j # 1.

4. Types can only be costed by a costing strategy profile. Specifically, if C;. # ¢, then

there exists a costing strategy profile a_; such that
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(a) uncosted types of the other player accept the bribe, ie. a_;(z_;) = 1 for all

T_;i € U_y;

(b) each newly costed type is strictly better off rejecting the bribe, i.e.
J (tz(l’) — %) al([)?l)ag(l'g) dPX_i\Xi (ZL’,Z|ZL'Z) >0 VZL’Z € Oir‘ (26)
X

The set of newly costed type profiles by i in round r is C;,. := C,. x U_;,.. The size of costing
sequence (C),<r is s((Cy)r<r) = Px(Ur<rCy). Infinite costing sequences and their sizes
i=1,2

are defined analogously.

Figure 2 depicts an example of costing sequence. Costing sequences give a lower bound

X
Cor | Cy
C124 (C24

Cag Cy Ci5Cis| Cpy

Ci5C13 Cii Xy

Figure 2: A two player costing sequence.
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on the cost of a mechanism.

Lemma 4. Let (C,),<r be any finite costing sequence of the bribe game of a mechanism M
that blocks all side contracts. Then the cost of M exceeds 1/2 times the size of (C))r<r, i.e.
c(M) > s((Cr)r<r)/2.

Proof. For any x € X, if x; € C, then

| 0@ dPex sl > [ t@esta) dPsx, (aale) @0
X2 X2
> % ag(l'g) dPXQ\Xl ($2|$1) (28)
X2
= %PXQ\Xl (U2T|x1)’ (29)

where the first inequality comes from the fact that ¢;(z;) > 0 and as(x2) € [0, 1], the second
from (26), and the third from the fact that ag(z2) = 1 for all uncosted types xzg € Uy,.

Integrating the first and last expressions over Cf,. gives

L _ t(a) dPx(z) > }Px(Cy). (30)

The left side of (30) sums up the transfers over all newly costed types. The right side sums
up the foregone bribes. Similarly, SX <Co to(z) dPx(x) > lPX (Cy,) for all Cy,.

Summing up the inequalities over both players and rounds r < R gives

(M) = JX t1(z) + ta(x) dPx () (31)
g furcherX2 dPX + JVX1><UT<RCQT ) dPX( ) (32)
_ ;% wag z) dPy(z) + f o, o) P (33)
>3 > Px(Cy) (34)
— 15(Co)ren). (35)

The first inequality results from our assumption that transfers are positive. The second
results from (30) and the fact that the C;,. and C;, sets are disjoint'2. O

12To see that they are disjoint for all » < R, suppose that z € C;. n Cypv. Definition 6 rules out the
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4.3.3 All Types Get Costed

Lemma 5. If players reject bribes in every equilibrium of the bribe game of M, then there

is an infinite costing sequence of size one.

The main idea of the proof of Lemma 5 is given by Claim 1. Claim 2 is required for

infinite type spaces.

Claim 1. Suppose the bribe game of M has no strict equilibrium in which bribes are accepted
with strictly positive probability. For any pair of positive measure sets of uncosted types
Uy, ©€ X1 and Uy, © Xo, either player 1 has a strateqy ay that costs a positive measure of

player 2’s types Cy, S Usy, or vice versa.

Proof. Consider the “constrained” bribe game in which uncosted types of both players are
constrained to accept bribes with probability 1, so that a;(x;) = 1 for all x; € Uj,, fori = 1,2.
Costed types z; € X;\U;, are unconstrained. Our assumptions ensure that those of Balder’s
equilibrium existence theorem (Balder, 1988, Theorem 3.1) apply to this constrained game,
so it has a weak equilibrium (af, a3). There are no profitable deviations within this restricted
strategy space. But a positive measure of constrained (uncosted) types accept bribes, so
it cannot be a strict equilibrium of the unconstrained bribe game (this would violate the
premise of the claim). Therefore, at least one player must have a weakly profitable deviation

by a strictly positive measure of uncosted types Cj, < U;. Thus, a*; is a valid costing

(2

strategy profile that induces Cj, to reject bribes, thereby getting costed, i.e. (26) holds for
all z; € Cj,. O

If X is finite then all type profiles must all get costed in a finite number of rounds, giving
a finite costing sequence of size 1, so Lemma 5 holds.
For the general case where X is not finite, we require Claim 2. Let O denote the set

of finite costing sequences. Let s* = sup Px, (Ur<rChy) + Px,(Ur<grCa,) denote the

T<RGO
supremum across finite costing sequences of the sum of the measure of costed player types.

Claim 2. Suppose the bribe game of M has no strict equilibrium in which bribes are ac-
cepted with strictly positive probability. There exists an infinite costing sequence (C,.)pen with
Px, (UrenCir) + Px, (UrenCyy) = s*.

possibility that ¢ = i and r # 7/, or that » = v/ and ¢ # ¢/. If i # i’ and r < ¢/ then z; € Us<Cis SO
z; ¢ U, But then x ¢ Cyr. The only remaining possibility is that » = v/ and i = 7'.

13Balder’s equilibrium existence theorem requires that the players’ expected utility functions are (C1’)
measurable with respect to types and actions; (C'1”) continuous with respect to actions; (C'1”) integrable
over types and actions; that the prior is (C2) absolutely continuous with respect to its marginals; and that
the action spaces are (C'3) compact metric spaces.
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Proof. Since s* is the supremum, there must exist a sequence of finite costing sequences
((CI™)r<R,, )men, €ach of length R,,, such that Px, (Ui<r,, C7}) + Px,(Ur<r,, C5) converges to
s*. For each i = 1,2, let (C!,),en be the concatenation of the finite sequences (C!"),<g,., and
let (Cj)ren be the sequence defined by Cjy = Cjy and Cj,41 = Cj,.; UC,. It is straightforward

to check that (C)),en is an infinite costing sequence, and that

PXI(UTSZQ<M R‘ZC]'T) + PXQ(UTSqu'm R‘ICQT) = PXl(UrngCﬂZ) + PX2(UT<Rm 2m7") m—_)OO) S*'

(36)
Hence PXI(UTENclT) + PX2(UTGNC2T) = s*. ]

Proof of Lemma 5. By Claim 2, there exists a costing sequence (C,.),en With Px, (U,enCh,) +
Py, (UrenCar) = s*. Suppose for the sake of a contradiction that s((C,).en) < 1. Then both
players must have a positive measure of uncosted types, Uy, and Us,, so Claim 1 implies
(without loss of generality) that player 1 has a strategy a} that costs a set of positive measure
of 2’s uncosted types, i.e. there exists Cy, < Us, such that ay(z1) = 1 for all ; € Uy, and (26)
holds for all zy € Cy,. Construct a sequence of strategies (af),en for player 1 by amending af
so that uncosted types accept, i.e. af(x1) 1= af(x1) + I (21 € Uy,)(1 — af(x1)). This sequence
converges pointwise to a} because aj(z1) = 1 for all 21 € Uy,. So the Monotone Convergence
Theorem and (26) imply that

7}1_)1{.10 . (ta(x) — 3) ai(x1) dPx, x, (@1|z2) = JX1 (ta(z) — 3) af(21) dPx,|x, (21]w2) > 0 (37)
for all x5 € C,. The Severini-Egorov Theorem tells us that the left side converges uniformly
on a set By, < Cy, with measure Px,(Bs,) > 0. It follows that there exists S € N such that
the types in B, can be costed in S rounds. There exists R > S such that the difference
between s* and Px,(U,<rC1) + Px,(Ur<rCo-) is less than Px,(Ba,). This implies that
Px,(Ur<rChr) + Px,(Ur<rCo) + Px,(Bas) > s*.

Define the finite sequence (C)),<r that sequence extends (C,),en by costing the Bs, types
in period S: Cf, = Cy,, and

Co. U By, if r = 5,
S (38)
Cy, otherwise.

Letting a} denote player 2’s costing strategy in round r of costing sequence (Co;)ren, the
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sequence (Cl),<g, together with strategy profiles (af, a}),<r, satisfies the conditions of Def-

inition 6. Hence, (C)),<g is a well defined, finite costing sequence with
Py, (Ur<rC1,) + Py (Ur<rCy,) 2 Py, (Ur<rCir) + Px,(Ur<rCor) + P, (Bax) > 8%, (39)

thereby contradicting our assumption that s* is the supremum. We conclude that (C,),ey is

a costing sequence of size one. [

It follows from Lemma 4 and Lemma 5 that ¢(M) > 1/2.

5 Extensions

In this section, we (simultaneously) generalise Theorem 1 to accommodate asymmetric roles

among the players, and more than two players.

5.1 Rigged Poker

The basic Poker mechanism treats both players symmetrically, but this may not be desirable

in practical applications. For example,

o If there are monitoring costs, then the designer might need to bias the mechanism in
favour of the auditor to ensure that her payoff is large enough to incentivize her to

bear these costs.

o If evidence can be fabricated, then the designer might need to bias the mechanism

against the auditor to ensure that she does not find it profitable to fabricate evidence.

o If the agent can exert effort to comply (and hence decrease the chance the auditor
obtains evidence), then rewarding the agent for not suppressing evidence undercuts

the incentive to exert effort.

Each of these situations adds a constraint to the basic problem in (P1) that a player’s
expected transfer is not too high or too low, i.e., that #; > {, t;(x) dP(z) > t; for upper and
lower bounds ¢; and ¢; > 0. Any solution to this constrained problem is also a solution to

an unconstrained problem in which the designer minimises a weighted sum of transfers with
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weights Ay and As:

i/r\l/lf [t1(x,y)/ A + ta(x,y)/A2] dP(z,y) s.t. M blocks every side contract S.  (P2)
XxY

Assigning a higher welfare weight \; has the effect of increasing the expected transfers that

player i receives. Problem (P2) is solved by the following Rigged Poker mechanism.'* Here,

P()\;) denotes the power distribution with shape parameter \;.">

Rigged Poker, casino version

1. The house deals the players their hands z; and 5 independently from P(A;) and
P(X2).

2. If the players can agree how to split a prize of II, then the Casino pays the split

and the game ends.
3. Otherwise, play proceeds to showdown:

(a) All cards are placed on the table facing up.

(b) The house independently draws a pair of community handicap cards y; ~
P(A1) and yo ~ P(A2).

(c) Player 1 wins Il + ¢ if y;x; > 9, and similarly for player 2.

(d) Otherwise, nobody wins.

It is without loss of generality to normalise the weights so that \; + Ay = 1. Theorem 2
shows that player i gets an expected payoff of A?(IT + ), and that the cost of the mechanism
is (A7 + A3)(II + €). If player i’s upper constraint is binding, then the solution to (P2) is
obtained by setting \; = \/m and A_; = 1—\;. Similarly, A\; = \/m if player
i’s lower constraint is binding.!°

Suppose we amend our running example from Section 2 so that Ray the Regulator wants
to incentivise Dave the Developer to provide habitats for local species at a cost of £2m. If
he does provide habitats, then there is a 10% chance that Anne finds hard evidence that the

hotel is bad for biodiversity (i.e., monitoring is imperfect). If she reports evidence whenever

1 The proof is a corollary of Theorem 2.

15A power distribution with shape parameter \; has support [0,1] and CDF F(z) = 2.

161f none of the transfer constraints binds then A\; = Ay = 1/2. If both bind then they must both be lower
bound constraints, in which case a solution can be obtained by setting Ay = Ay = 1/2 and increases the
transfers by the smallest constant necessary to satisfy the lower bounds.
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she finds it, then Dave’s expected payoff is 10%x (., ta(x, y)dP(z,y)+90% x £10.1m—£2m.
If he does not provide habitats, then there is a 35% chance that Anne finds evidence, so his
expected payoff is 35% x §, . ta(z,y)dP(x,y) + 65% x £10.1m. Dave therefore provides
habitats if and only if

10% x f ta(z,y)dP(x,y) + 90% x £10.1m — £2m
XxY

= 35% x J to(z,y)dP(z,y) + 65% x £10.1m, (40)
XxY

which simplifies to £2.1m > {, . t2(z,y)dP(x,y). Hence t = £2.1m The symmetric Poker
mechanisms do not work because they give Dave an expected payoff of £2.525m: rewarding
Dave for not bribing Anne undermines his incentive to provide habitats. However, if we
choose \p = \/m, then his expected payoff is exactly 10.1\% = 2.1m. Hence, the
following Rigged Poker mechanism effectively preserves Dave’s incentive to provide habitat

by limiting his rewards:

Rigged Poker, moral hazard version

1. Ray announces the mechanism.
2. Dave chooses whether or not to conserve the local species.

3. Ray deals Anne and Dave their hands z; and 25 independently from P(1 — Ap)
and P(Ap) respectively.

4. If Anne fails to obtain evidence, or if Dave bribes Anne to hide any evidence that

she does find, then Ray grants permission and the game ends.

5. Otherwise, if Anne reveals evidence that Dave did not conserve, then play pro-
ceeds to showdown:
(a) All cards are placed on the table facing up.

(b) Ray independently draws a pair of community handicap cards y; ~ P(1 —
Ap) and y2 ~ P(Ap).

(c) Ray pays Anne a £10.1m reward if y,21 > x9, and similarly for Dave.

(d) Otherwise, Ray pays nothing.
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Anne’s expected payoff is £10.1m x (1 — 4/2.1/10.1)? ~ £2.989m, so the total cost of the

Rigged mechanism is £5.089m, an increase of 1% relative to the symmetric mechanism.

5.2 n-player Poker

Appendix B shows that any mechanism that gives private information to only one of the
two players must cost at least 1 — 1/e ~ 0.6321, which is strictly greater than the cost of
our Poker mechanisms. This suggests that giving private information to more players can
increase information frictions and decrease the cost of deterring bribes. So what happens
if we generalise Poker to more than two players? Does the presence of multiple potential
whistleblowers make it easier to deter corruption?

Our definitions of mechanisms and side contracts naturally extend from 2 to a set N of

players, to give the following n-player problem:

C(t) = i/{l/tf c(M) s.t. M blocks every side contract S,
, (P3)
Jti(:v,y) dP(z,y) <t; for all i e N.

Our analysis can be extended to accommodate lower transfer limits of the form §{¢;(z)dP(x) >

t;. As in Section 5.1, we define an auxiliary, weighted cost problem by
i/r\l/tf c(M;A) s.t. M blocks every side contract S, (P4)

where ¢(M; ) = Y.y § ti(@)/Ai dPx(x) is the weighted cost of M with welfare weights
(Ai)ien normalised such that >}, A; = 1. The n-player generalisation of Rigged Poker with
showdown reward ¢, denoted M*(e, A) is defined by Y* = X,y Yi**, Y;* = X* = [0, 1] for all
i € N, X* is the set of Lebesgue measurable subsets of [0, 1]*", P5 is the product of marginals
P(X\:)? (ie. z; and y; are both drawn from P()\;)), and tf(z,y) = I(yiz; = max,; z;)(1 +¢).

Theorem 2.

1. Rigged Poker with showdown reward e > 0 and welfare weights (\;)ien blocks all feasible
side contracts, and gives player i an expected payoff of (1 + €)A\2. It has weighted cost
c(M*(e,\); \) = 1 + ¢, and unweighted cost c(M*(e,\)) = (1 + &) Dy A7

2. For all welfare weights (\;)ien, the infimum of (P4) is 1 and lim. o c(M*(g, A\); ) = 1.
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3. Hence Problem (P3) can be reformulated in terms of n-player Rigged Poker as

Ct)= inf c(M*(e,N)) s.t. Z Ni=1and (14+e)A\} <t forallie N. (41)

0,e[0,1]"
e>0.2¢[0,1] ieN

Proof. The proof of the first two points is a straightforward generalization of the proof of
Theorem 1 — see Appendix A for details.

We now prove the last point. Let M* = {M™*(e,\) : e > 0,A € [0,1]",> .y Ai = 1} be
the set of Rigged Poker mechanisms. From the first part, we know that restricting attention
to Rigged Poker is without loss of generality, i.e. adding a constraint, that M € M*, does not
change the utility possibility set, and hence adding this constraint to Problem (P3) does not
change its value. Moreover, every Rigged Poker mechanism M € M™* blocks side contracts,

so the constraint M € M* can in fact replace the side contract blocking constraint, giving

C(t) = /vtm/\f/t c(M) s.t. Jti(x,y) dP(xz,y) <t; for allie N. (42)
e *

Reformulating the choice as (¢, \) instead of M, and substituting §¢;(z,y) dP(x,y) = (1 +

£)A? into the constraint gives (41). O

Just like regular Poker, only the player with the best hand stands a chance of winning.
Unlike regular Poker, cards are drawn from different decks with different distributions, and
the player with the best hand does not necessarily win: she only wins if her hand beats the
second highest hand by a large enough margin. The (unweighted) cost of the mechanism is
minimised when all players are symmetric (i.e. when \; = 1/n for all i € N). In this case,
the cost of the mechanism is 1/n.

This means that the presence of multiple potential whistleblowers decreases the cost of
deterring corruption. This is because n-Player Poker creates a more severe adverse selection
problem. We discuss the implications for information design and corruption in sections 6

and 7 respectively.

6 Literature

We contribute to an extensive economic literature on corruption.!” Tirole (1986) developed

the first principal-monitor-agent model of corruption, and Laffont and Martimort (1997)

17See Tirole (1993) and Aidt (2003) for surveys.
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were the first to study the role of (exogenous) information frictions in corrupt side-contracts.
Asseyer (2020) and Mookherjee and Tsumagari (2023) study the impact of information fric-
tions arising from the agent’s private information about his type. Asseyer (2020) shows how
the principal can utilise this friction by carefully designing the monitor’s monitoring tech-
nology, thereby reducing the costs of deterring bribes. Mookherjee and Tsumagari (2023)
show that the principal can use this friction to deter bribes and extortion by increasing
the bargaining power of the monitor. But neither consider the possibility of using random
contracts to create endogenous information frictions. Angelucci and Russo (2022) show that
a designer can use self-reporting schemes to create an equilibrium that is free from bribes
and extortion. But this equilibrium is not guaranteed to be unique. If all evidence is soft,
then Strulovici (2021) finds that it is impossible to incentivise truthful reporting by corrupt-
ible monitors without resorting to unbounded rewards and punishments. But he does not
consider the use of random incentives to reduce enforcement costs.

The closest papers to ours are von Negenborn and Pollrich (2020) and Ortner and Chas-
sang (2018). von Negenborn and Pollrich (2020) use random incentives and private mes-
sages to create a lemons problem that deters agent-monitor collusion at arbitrarily small
cost. Their scheme is simple—it has a single informed player with a binary message —but
its practical use is limited by the fact that it uses infinitely large rewards and punishments
(Appendix C describes a similar mechanism that would solve our corruption problem at
arbitrarily low cost). When rewards and punishments are bounded, their mechanism is no
longer feasible. Appendix C demonstrates how the their logic can be extended to produce
a mechanism with bounded payoffs, which is feasible, but this mechanism is not optimal: it
costs 3/4, whilst the Poker mechanism costs only 1/2. It improves on the binary scheme by
giving private information to both players, and increasing the number of states from two to
a continuum. Appendix C shows that no mechanism with a single informed player with a bi-
nary message can cost less than 3/4. The details of our respective settings are also different,
e.g. they do partial implementation with soft evidence, whereas we do full implementation
with hard evidence.

Ortner and Chassang (2018) deter collusion in a moral hazard setting by paying the
monitor a random wage. Doing so creates a screening problem for the agent because the
monitor can demand a large bribe by pretending to have a high wage, even if her wage is
actually small. They find that the optimal wage distribution creates unit-elastic demand
for hiding evidence and thereby maximises the monitor’s information rent. If monitoring is

perfect, then their mechanism incentivises the agent to comply, so the monitor never obtains
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incriminating evidence on the equilibrium path. There is no need for them to deter bribes
per se, because they only occur off-path. But their mechanism breaks down if monitoring is
imperfect because the agent is always better off offering at least a small bribe whenever the
monitor obtains evidence, and there is a strictly positive chance that the monitor accepts
it. This can potentially upset the agent’s incentive to comply in the first place. Indeed, the
same is true for any wage distribution whose support strictly contains the agent’s fine. We
address this by allowing the designer to pay the agent a reward too. Doing so allows her
to correlate the agent’s reward with the monitor’s wage, thereby creating a lemons problem
for the agent that deters on and off path bribes. Constant Handicap Poker reduces the
cost of deterring bribes even further by giving the agent some private information about his
reward, so as to create a two-sided lemons problem.!® Handicap Poker deters a larger class
of arbitrated bribes by adding a two-sided screening problem with the same one-sided rent-
maximising payoff distribution (based on the reciprocal of a uniform distribution) as Ortner
and Chassang (2018) and others (Condorelli and Szentes, 2020; Ali et al., 2022; Garrett
et al., 2023).

Our results contribute to the literature on robust mechanism design (see Carroll, 2019,
for a survey) and worst-case information structures (see Brooks and Du, 2025). A large
literature has shown how private information can lead to market inefficiencies through chan-
nels such as adverse selection (Akerlof, 1970), screening (Myerson and Satterthwaite, 1983),
and contagion (Morris and Shin, 2012). Carroll (2016) studies the role of these frictions
in two-player binary-action supermodular games (including bilateral trade at a fixed price).
Surprisingly, he finds that for every private information structure, there exists a public infor-
mation structure with the same lowest expected surplus across all equilibria. This suggests
that strictly private information frictions need not play a role in the worst-case information
structures of bilateral trade at a fixed price. We find that this result no longer holds when
the terms of trade are negotiable. A worst-case public information structure for one price is
typically not worst-case for other prices. By contrast, Poker generates an information struc-
ture with private messages that is simultaneously worst-case for all prices (and mediated
side contracts) and exhibits all of the classical information frictions. Moreover, we adapt the
proof technique of Carroll’s Proposition 3.1 to circumvent a transfinite induction problem,
allowing us to generalize our results from finite to arbitrary information structures.

In the context of public goods provision, Brooks and Du (2023, 2024) solve for an infor-

18 Appendix B shows that the cost of solving (P1) with one-sided private information is 1 — 1/e ~ 0.6321,
whilst Poker costs 0.5.
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mation structure that minimises the maximum attainable social surplus from any equilibrium
of any mechanism. Our design problem is closely related to theirs. Their players have an
unknown value for a public good, whereas ours have an unknown outside option for reaching
agreement. In their model, the designer chooses a mechanism to allocate expenditure, sub-
ject to incentive constraints. In ours, the mafia chooses a mechanism to allocate the surplus
generated by agreement, subject to incentive constraints. In their model, Nature chooses an
information structure to adversarially minimise attainable social surplus, subject to a con-
straint that expected value of the public good is above a given threshold. In ours, the (grand)
designer chooses an information structure to minimise the expected value of outside options
(i.e. maximise the expected net value of agreement), subject to the constraint that there are
no feasible contracts for the mafia to offer. Like them, we find that a worst-case information
structure (i.e. Handicap Poker) that completely destroys the gains from coordination, even
though it is common knowledge that the coordination generates strictly positive surplus with
probability arbitrarily close to 1. Nonetheless, there are two key differences between Poker
and Brooks and Du’s potential minimising information structure. First, their information
structure features correlated messages, whilst Poker has independent messages. Correlated
messages are useless in our environment because neither the players nor the Mafia face ex
post liability constraints, so the Mafia could use a Cremer and McLean (1988)-type mech-
anism to recover players’ private information. Second, their players’ values for the public
good depend on the relative size of their own message to the sum of all messages, whereas our
players’ showdown payoffs from Poker depend on the relative size of their own message to
the maximum of all other messages. This reflects the fact that our players require unanimous
agreement to generate a fixed amount of surplus, so the amount of realisable surplus depends
on the most reluctant player, i.e. who has the best outside option. By contrast, surplus from
public good provision in Brooks and Du scales linearly with the sum of expenditures.

Our problem fits into a larger class of general mechanism design problems in which the
designer chooses both transfers and information (See, e.g., Bergemann and Morris, 2019;
Morris et al., 2022; Moriya and Yamashita, 2020). One example is the stochastic ranking
scheme of Halac et al. (2021). Their goal is to eliminate all shirking equilibria among a team
of workers, which has parallels with eliminating all bribe equilibria in a monitoring hierarchy.
Both shirking and bribing are socially inefficient. Their ranking schemes are superficially
similar to our Poker mechanism insofar as (i) all players are told their own types; and (ii)
the transfers are chosen so that the highest type has a dominant strategy, and a cascade

of the subsequent types leads to a unique equilibrium. However, bribes are harder to deter
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because there are gains from trade, whereas shirking is purely a coordination failure. In
other words, our problem is about thwarting coordination, whereas their problem is about
ensuring coordination. Our schemes are therefore different. First, our Poker mechanism
creates a lemons problem, which frustrates coordination. By contrast, in ranking schemes,
transfers are not interdependent, and thus do not create lemons problems. Second, Poker
hands are independent, and thus can not be screened by a Cremer and McLean (1988) style

mechanism. In contrast, optimal ranking schemes involve correlated types.

7 Conclusion

In this article, we have proposed a new, Poker-like mechanism for deterring bribes. We
showed that this mechanism is theoretically optimal and deters a wide class of corrupt side
contracts. It can incentivise compliance even when monitoring is imperfect, and does not
rely on using arbitrarily large rewards and punishments. The mechanism also gives insights
into ‘worst-case’ information structures and gives an upper bound on the amount of surplus
lost to information frictions in a class of bargaining and public goods games. We conclude
by suggesting avenues for future research.

One of the biggest challenges in dealing with corruption is that it is very diverse, and it is
difficult to understand and close every possible loophole. Indeed, most real world institutions
are highly vulnerable to a single dishonest judge or auditor. We have modelled the mafia
as having full commitment power in side contracts, and we have ruled out a large class
of loopholes. However, we assumed the mafia is incapable of violence, and incapable of
committing to punishing bribe rejections. This raises the question of whether it is possible
to deter a more omnipotent mafia.

One potential source of loopholes in our Poker mechanisms is that decisions are close to a
knife-edge: there are always profitable deviations from signing a corrupt agreement, but the
deviation profits (determined by ¢) are small, to keep the cost of the mechanism down. If
corruption opportunities arise regularly, then the short-term gain from a profitable deviation
is outweighed by the long-term benefit of maintaining a reputation for being agreeable to
corrupt deals. One solution would be to avoid repeat encounters through random assignment
of auditors. However, this might be difficult if there are few auditors, or there are a small
number of large firms to be regulated. There might be better solutions, such as combining
multiple projects into a single Poker game.

Another possible loophole is the “casino” which administers the Poker game. We have
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replaced one problematic assumption, that auditors can not be bribed, with another prob-
lematic assumption, that casinos can not be bribed. It is unclear whether the public can
monitor a Poker game and rule out the casino breaking its own rules. One solution might
be to eliminate the casino altogether, and replace it with a computer system based on a
cryptographic communication protocol. Indeed, Goldwasser and Micali (1982) proposed a
protocol for playing “mental Poker” without the help of a casino. Their proposal focuses on
unilateral cheating rather than collusion, so they do not prevent the players from credibly
showing each other their hands, e.g. with zero-knowledge proofs. A large literature has
extended their technique to “receipt-free electronic voting”, which prevents vote buying. A
similar extension ought to allow Handicap Poker without a casino.

Another direction is adapting the mechanism to other scenarios. The fact that the
expected cost of n-player Poker decreases inversely in the number of players suggests that
our Poker mechanism may be particularly useful in regulatory contexts where large numbers
of monitors or whistle blowers are available. If evidence is perfectly correlated, then the
regulator version of 2-player Poker extends very naturally to n-players because there are still
only two evidential outcomes: either all monitors receive evidence, or none of them do. But
what if it is not perfectly correlated? What rewards or punishments should be paid if some
but not all monitors report evidence?

A variant of Handicap Poker might be applicable to other scenarios involving coalition
formation, such as international agreements. Efficient cooperation is often thwarted by
the threat of subcoalitional deviations.!® The literature on coalition formation therefore
seeks to predict which outcomes can be made stable against such deviations (see Demuynck
et al. (2019) for a recent example). But to the best of our knowledge, this literature has
not yet considered endogenous private information and random incentives. By increasing
information frictions within subcoalitions, a Poker-like mechanism may be able to stabilise

a broader range of efficient outcomes.
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Appendix A n-player Poker

Let A1, ..., A, be welfare weights for each of the players, and assume that > ..\ A; = 1. The
proof in Section 4.1 that Handicap Poker deters all possible side contracts generalises in a

straightforward way. Here we give only the key equations and mathematical derivations.

A.1 n-player Poker Blocks All Side Contracts

The n-player Poker mechanism M*(e, \) is equivalent to the mechanism that draws z; and

y; uniformly and pays transfers

[| iy arvtn) = @ 2y (00 > st (13)
Y VED
= (1 + E)PY (y = TEIQZX(x]))\z/)\J/QjZ) (44)
= (1 + ¢) max {0, 1- mjx(:cj)’\"/)‘f/xi} : (45)
VE!
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Player i’s expected payoff if he reports x to the side contract when his true hand is z; is

Vi(zs, ) :f b i) + (1 — a(@lz_)(1 + ¢) maX{O 1_15133({ }/x} dz

—1

:f bl(a:;,x_z) dﬂj_i

—1
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1
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(46)

(1—a(a},z_)(1 — 23 ) de_yy dey  (47)
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where A;;(x;, x;) :=1— SX o Ai/)\k](l —a(x)) dr_;; is the probability of accepting a split
ki, j 1Y%
when ¢ has the greatest Weighjted]hand, followed by j. Leibnitz rule gives
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i

The envelope theorem gives the following generalization of Lemma 1.

i/

1 i "y
Wi(z) = (1+ 5)—ZJ 23 i Ay(wi, ;) daj. (52)
0

e
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The side player participation constraint (SPP) for the strongest hand gives

rl
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Together with the fundamental theorem of calculus, this gives
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Integrating (48) gives
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Substituting this into (61) gives

Ni/X
rl $i] ¢
f bie) de > (14— (1+e) Y J ey (U= Ag(aaay) dey de, (63)
Zido Jo
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So the mafia’s total transfers to the players are at least

injbi(:c) 1+52/\—J (1—a(x ))dx>(1+5)f

. a(z) de > f a(x) dx. (67)

b's
The last inequality is strict if {a(z) dz > 0, as per Lemma 2.

By the same reasoning that concludes Section 4.1, this implies one of two possibilities.
If the side contract delivers agreements with positive probability, then the mafia makes a
loss, violating their participation constraint. Otherwise, the side contract creates no surplus,

violating the side surplus constraint.

A.2 The Cost of n-player Poker

Derivations analogous to equations (53)-(60) give W;(z;) = (1 + &)\i(x;)/* 1. Hence
So i) dx; = (1+¢)A?. The weighted cost of n-player Poker is therefore (14+¢) Y, .y A =
1+e. The unweighted cost is (1 +¢) Y,y A7. If all players are weighted equally, then the

cost is 1te

A.3 n-player Poker is Optimal

Ifbe ]R" is an exogenous split, then the weighted cost of buying out the cheapest player is

mingey < A . The most costly split to block is b = X\.2° The players’ ex ante utility function in

20The most costly split solves maxpeRrn [mingen bi/Ai] s.t. X,y bi = 1.
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Definition 5 in the bribe game generalises to

Ui(ai,a—;) = L [51‘ [ Jas(zs) + <1 - H%(%)) i(x)

JEN JEN

dPx (). (68)

Lemma 3 generalises in a straightforward way. Equation (26) in the definition of costing

sequences generalises to
f () — bl [ T as(5) Py yx (il) > 0 Vs e Ci (69)
i Ji
We have C,, := C}, x Xz Uj,. Lemma 4 becomes
Lemma 4'. Let (C,),<g be any finite costing sequence of the bribe game of a mechanism

M that blocks all side contracts. Then the weighted cost of M exceeds the size of (C,),<r,
ie. c(M;A) > s((Cy)r<r)-

The inequalities in the proof generalise to

J tz(l“) dPX,i\Xi ($—z|$z) > )\iPX,i\Xi(Xj;einrhfi)» (70)

J f(z) dPx(x) > APy (Cy). (71)
CirxX_
Taking the weighted sum of the inequalities over players ¢ € N and rounds r < R gives

(M) = 3 | (o)A dx(o) (72)

iEN

> EN L@c,rxx_z ()N dPx () (73)

=S f (2)/As dPx(2) (74)

ieN CWXX,
r<R

> Y1 Ai/Ai x Px(Cy) (75)
iEN
r<R

= s((Cr)r<r)- (76)
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Finally, in the proof of Lemma 5, the inequality (37) becomes

tim [ (1) = B[ T oy) dPs_ (o)

- | 1@ -n e apx o) (77)
> 0 (78)

for all x; € C;,.

Appendix B One-sided Mechanisms

Proposition 1. Any solution to the problem in (P1) with the additional constraint that

|So| =1 costs at least 1 — 1/e, where e is Euler’s number.

Proof. The idea of the proof is similar to that of Proposition 1 in Ortner and Chassang
(2018).2!  Consider the class of “price” side contracts of the form a(z) = I(t;(x) < p),
bi(x) = p, bay(x) =1 — p — €, where p is a bribe (or price). By construction, price contracts
satisfy (SPP) and (SMP) participation constraints for player 1, and the mafia. Player 2’s
expected payoff from a contract with price pis F(p)(1—p—e)+(1—F(p))T>(p), where F(p) :=
Px(z € X : t1(x) < p) is the CDF of player 1’s transfer, and T5(p) := E[ta2(x)[t:(z) = p] is
player 2’s expected transfer conditional on player 1’s transfer exceeding the price. The fact
that transfers are positive means that F'(0) = 0 and 75(0) = E[t2(z)]. Thus, a mechanism
blocks these price contracts if and only if it violates player 2’s (SPP) constraint for all € > 0.
This occurs only if F(p)(1 —p) + (1 — F(p))T2(p) < T2(0) for all p > 0, which rearranges to

_ B0 - Tp)

. (79)
Since the designer wants to minimise the expected value of ¢;, she can do no better than
choosing P so that (79) holds with equality. In this case, the support of F' is bound above by
1 —T5(0), so the right side of (79) is increasing in T5(p). The value of T5(p) that minimises
player 1’s expected payoff is therefore 0 for all p > 0. So player 1’s expected payoff is bound

21Our mechanism nonetheless differs qualitatively from theirs because player 2’s transfer t5 is endogenous
and depends on player one’s message x1; in their mechanism it is exogenous and constant.
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below by

1—T(0) 1-T5(0)
Bh@l- | pare) -no) [ (50)

The total cost of the mechanism is bound below by

1-T5(0)

mu@+m@n=nmw‘ P

0 7 P+ B0, (81)

which is minimised by 75(0) = 1/e and takes minimal value 1 — 1/e. O

An optimal one-sided mechanism has P uniform over [0,1], t;(z) =1 — L and ts(21) =
I(x1 < 1/e). This yields the same unit-elastic demand for agreements as the optimal distri-
butions obtained in Ortner and Chassang (2018), Condorelli and Szentes (2020) and others.

Appendix C Binary Mechanisms

Proposition 2. Any solution to the problem in (P1) with |Si1| = 2 and |Ss| = 1 costs at
least 3/4.

Proof. Suppose that the messages are labelled H (high) and L (low). Suppose without loss
of generality that ¢;(H) > t1(L). The designers problem reduces to choosing transfers ¢, (H),
t1(L), ta(H), and to(L), and a CDF F(t1(L)) to minimise

F(t (L)t (L) +t2(L)) + (1 = F(tu(L)(01(H) + t2(H)) (82)

subject the side contract blocking constraint.
The same reasoning as the proof of Proposition 1 gives us that (79) holds at F'(¢1(L)) and

F(t1(H)) = 1. The latter gives T5(0) = 1—t;(H). The former then gives F(¢;(L)) = 11:2((2]))

The lower bound on the designer’s cost reduces to

081 (0) + (1 S8 (1) + 1 - ) &
=T (M (L) = 0 (H)) + 1 (84

which is minimised by setting ¢1(L) = 0 and ¢;(H) = 1/2. The cost must therefore be greater
than 3/4. O
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A feasible mechanism that attains this lower bound is the following “coin toss mecha-
nism”: p*(H) =1/2, t5(L) = t5(H) = 0, t§(H) = 1/2, and t5(L) = 1. The L state plays the
role of a lemon: player 1 is always keen to reach an agreement in this state, but it is always
bad for player 2.

If one of the players has unlimited liability then for any M > 0, the following mechanism
is feasible and costs only 1/(M + 1). The player with unlimited liability is player 2, the
uninformed player, and p*(H) = M /(1 + M), t;(L) =0, t;(H) = t5(L) = 1, and t5(H) =
—M.
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