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Summary

It is well known that if the regression coefficient of y on w (β say) has a

constant probability limit but we only have two noisy measures of w - x and z

- then we may obtain consistent estimates of β as long as a) the measurement

errors are classical and b) the measurement errors are uncorrelated. We pro-

pose a simple test of a) and a test for b) as part of a composite null. To effect the

latter we instrument x with z and functions of z and vice versa to obtain two sets

of overidentifying restrictions tested via a standard J test of instrument validity.

If no test in this sequence rejects we then combine the orthogonality conditions to

obtain a single efficient estimate of β. We discuss the likely prior validity of the

various instruments and the pitfalls in using the test procedure. Unlike standard

overidentification tests which diverge in heterogeneous response settings even when

each instrument is valid, our tests only diverge when one or more instrument is

invalid. We apply the test sequence and estimation procedure to analyse i) the

cyclical component of wages and ii) the effect of state level unemployment on bur-

glaries in the US. Correcting for measurement error raises the estimates of β in both

applications.

JEL Codes:

Keywords: Measurement Error, Instrumental Variables, Consistent OLS esti-

mation.
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1 Introduction and Overview

Regressor measurement error (ME) is a pervasive problem in survey data. There is accord-

ingly a huge literature assessing its impact and - under suitable assumptions - proposing

estimators that circumvent the problem in parametric and nonparametric settings. (For

an excellent survey and overview of the literature see Bound et al. (2001) or more recently

for a review focusing on nonlinear models see Chen et al. (2011)). In this paper we focus

on a single thread of this problem namely the case where the sole object of interest is

the least squares estimate of y on an unobserved regressor w (β) and where two noisy

measures of w - x and z - are available. We propose a simple sequence of tests whose

composite null is that the instruments are valid - a condition that ensures the estimate

of β is consistent. The first test in the sequence has a null that ME’s are classical in na-

ture. The subsequent tests examine instrument validity. Use of instruments is standard

in solving measurement error problems. However the novelty here is that we use functions

of x to instrument z and functions of z to instrument x together in a single procedure. A

key necessity is that β is the sole focus of interest. We now expand on the procedure and

outline the paper’s contents.

It is well known that if a) x and z are two noisy measures of an unobserved regressor

w, b) the object of interest is an OLS estimate (β) of y on w, c) if the latter tends

to a constant limit, d) the two measurement errors (henceforth ME’s) are classical in

nature and e) the ME’s are uncorrelated, then using x as an instrument for z and/or

vice versa will deliver consistent estimates of β. In this paper we take b) as given and

adopt c) as an assumption - an assumption which is arguably weak. We propose a simple

test to examine d) - the first test in a sequence of three. Condition e) however is more

problematic. As Bound et al. (2001) point out, there is no direct way of testing the

uncorrelatedness of ME’s without a validation study. In particular and as we show below,

basing a test on the difference between the estimate generated by using x as an instrument

for z and z as an instrument for x is doomed to fail because under the alternative where

the ME’s are correlated both estimates have the same asymptotic bias. The second and

third tests in our sequence overcome this problem. They separately test overidentification

restrictions generated by using instruments based on x for z and vice versa.1 In this

scenario uncorrelatedness of ME’s is part of a composite null that the instruments are

1If there are only sufficient relevant instruments to conduct one of the two overidentification tests

then the sequence would be reduced to two tests. Of course if it is not possible to conduct either of the

overidentification tests then we could not proceed at all. However even in that case the test for classical

ME (the first in our sequence) is always executable and if it passes may allow us to bound the bias.
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valid - a null that guarantees consistency of β. The instruments we propose are powers

and (where available) lagged values of x for z and vice versa. Finally if each of the tests

in the sequence fail to reject, we propose that estimation of β proceed by combining the

orthogonality conditions underpinning the second and third tests. This last step would

yield a further overidentification test. However, as we show below, this last test may suffer

the pitfall alluded to above where despite two instruments being invalid each delivers the

same biased estimate of β - a consequence that leads to test inconsistency.

We emphasise at this point that in a heterogeneous response setting, traditional overi-

dentification tests of instrument validity diverge even if the instruments are valid. This is

because in such settings, different valid instruments estimate different weighted averages

of the heterogeneous responses of individual units (see for example Angrist and Imbens

(2000)). By contrast and as we illustrate below, in our framework all valid instruments

consistently estimate the same OLS parameter. 2 Another point worthy of emphasis is

that our view of ME is very broad. We define it as any discrepancy between the desired

regressor and the measured regressor. In the context of microeconometric survey data

ME is clearly understood as a misreported response. However in a macroeconometric

context ME could arise because a macro variable is estimated from micro level data. In

one of our empirical applications we use estimates from the BLS of annual state level un-

employment rates. As these are compiled from the CPS they may contain both sampling

error (CPS samples are quite small) and misreporting error. Typically this scenario arises

when macroeconomic stylised facts - rather than microeconometric causal effects - are the

objects of interest.

In the next section we outline our proposed testing and estimation framework. In

section 3 we examine power and size of the test sequence via a small simulation study.

In section 4 we apply the tests and IV estimation in two scenarios:- a) the cyclicality

of US real wages and b) the effects of local (state level) unemployment on burglaries in

the US. The Local Area Unemployment Statistics(LAUS) used in applications such as b)

have a high degree of ME as they are derived from small subsamples of various surveys,

notably and mainly the CPS. We obtain two measures of the state unemployment rate by

random sampling across counties. Using these two measures and controlling for ME raises

estimates of the impact of local unemployment on crime substantially. In a) we treat the

2The quasi experimental framework of Angrist and Imbens treats heterogeneous responses as fixed

parameters attached to individuals rather than as random variables. However Imbens and Rubens (2015)

propose a Bayesian extension to the framework which envisages the treatment effects as being drawn

from a meta distribution or “super population”. Adopting this approach here allows our framework to

accommodate heterogeneous responses of y to w.
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issue of“true” cyclical measure as a latent variable problem. There we find that whilst

the two individual measures of the business cycle deliver rather different OLS estimates of

wage cyclicality, both are lower and less significant than that derived using our procedure.

2 Model and Assumptions

Consider the three equation system

yi ≡ βNwi + εNi .......i = 1, ..N (1)∑N
i=1wiε

N
i = 0 (2)

xi = wi + ui (3)

zi = wi + vi (4)

yi = βNxi + (εNi − βui) (5)

yi = βNzi + (εNi − βvi) (6)

|ρxz| < 1 (7)

where wi is an unobserved variable for which there are two noisy measures xi and zi

and βN is the OLS coefficient of yi on wi in a sample of size N . Equations (1) to (6) are

purely definitional. Equation (1) simply defines the object of interest - the OLS regression

of y on w (or more formally the linear projection of y on w). The assumption in (7) requires

ME to exist and for the two measures to have some independent variation. Later on we

will be instrumenting z with functions of x and vice versa in a single procedure. This will

not be feasible if x and z are identical. We view this assumption as easy to check and

rather weak; it merely defines what is meant when we say that two noisy measures of w

are available. In what follows we drop the i subscript when discussing variables in the

text wherever possible and
∑

will denote a summation over i = 1, ..N . In the Annex we

show how the analysis is easily extended to allow for controls in (1).

We confine the analysis to settings in which plim{βN} = β i.e. where βN has a

constant probability limit. The actual interpretation of β will depend on the underlying

model for the variables and will be context specific. Below we discuss a few examples

including one where we may interpret β in terms of underlying heterogeneous responses

of y to w. We wish to estimate β via GMM 3 using x and functions thereof as instruments

3Although we refer to β as a large sample OLS estimate more formally it is the parameter in the
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for z and vice versa in a single estimation procedure. Our sole focus on β means we are

effectively estimating a linear model. Although the assumptions required for GMM to be

a valid tool for inference in this context are standard4, our “reflexive” use of instruments

is not. In particular we need to be sure that the the orthogonality conditions we use

have a nonsingular covariance matrix. In the Annex we give sufficient conditions for this

to hold and show that the use of “reflexive” instruments itself does not generically lead

to the failure of this assumption. Finally our use of powers of x and z as instruments

requires the existence of moments of higher order than is typically required (up to order

eight in our case). The test of Trapani (2016) could be used to establish the existence of

such moments.

2.1 Heterogeneous Responses

The assumption that plim{βN} = β is not trivial in settings of heterogeneous responses.

For example suppose that yi was equal to f(wi, γi, σiξi) where ξi is an iid random (unob-

served) error term independent of wi and γi a vector of parameters defining the response

of yi to wi. In this scenario we would require inter alia that (σi, γi) be drawn from a pdf

with a finite number of fixed parameters. (See for example Pesaran (2015) who analyses

the case where f is linear, w is exogenous and γi are heterogenous random slopes. See

also Imbens and Rubens (2015) who allow for treatment effects to be drawn from a “su-

per population”.) To take a more specific case consider a random parameter model with

heterogenous slopes βi.

yi = βiwi + υi (8)

E(βi) = β where (9)

yi = βwi + ςi (10)

ςi = υi + (βi − β)wi (11)

= υi + ξβi wi (12)

asymptotic linear projection of y on w. It can be estimated in a number of ways including GMM
4Hansen (1982) seminal paper gives general conditions for GMM to offer valid estimation and inference

for time series data and in a more recent paper Kuersteiner and Prucher(2013) gives conditions for panel

data where “T” is fixed but “N ′′ is large.
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5 Consider the case where w is uncorrelated with both ξβw and ν. In this scenario β = β

and the large sample OLS estimate of y on w (β) has a clear causal interpretation. By

contrast if ξβw was correlated with w then β = β +
σ
wwξβ

σw2
where here and henceforth

σa denotes plim(
∑N

i=1ai/N). Alternatively if w was not strictly exogenous and no causal

interpretation was possible β would be a data moment. Such a quantity would be useful

when calibrating a theoretical model in which w and y were jointly determined and where

a data value for β was required as a target. However we re-emphasise that this paper

addresses the impact of ME on the large sample estimate of β and so the interpretation

of β is not central to it.

The overidentification tests we propose are analagous to those traditionally used to

examine instrument validity in the fixed response model without ME. As is well known,

in a model with heterogeneous responses, overidentification tests may reject the null even

when instruments are valid - valid in the sense of being uncorrelated with the equation’s

error term. This issue does not arise in our framework as we now explain. Consider

again equation (8) above but now where w is thought to be correlated with ν. The

investigator may have two instruments at her disposal and wish to test their validity in

the traditional way. Both instruments may well be uncorrelated with υ and hence be valid

in the traditional sense. However if their correlation with βi (equivalently with ξβi ) differs

then the overidentification test of their validity will diverge. In our framework things are

different. To illustrate, reconsider the case of (10) but now with w being uncorrelated

with the composite error term ς. The OLS estimate of y on w here consistently estimates

β. We do not observe w so treating z (or x) as the regressor instead we propose to

use x (or z) and functions of x (or z) to instrument for z (or x). We would then test

the overidentification restrictions arising from having more than one instrument using a

standard J test. In this scenario a key part of our null hypothesis is that the ME’s are

uncorrelated with ςi. In turn this would require that the ME’s be uncorrelated with the

random response parameter βi. For us this is what instrument validity means. A rejection

of our null does not speak to instrument validity in the traditional sense therefore. Instead

it merely tells us that IV does not deliver consistent estimates of the OLS parameter β -

something that is our sole focus of interest. 6

Later we will be seeking two sets of instruments. One set will be arguably uncor-

5This issue is resonant of the debate between Heckman (1999) There Heckman argues that the IV

estimate only converges to the treatment on the treated parameter if the size of response - here ξβ- does

not cause agents to select into treatment
6There are cases where failure of parts of the composite null to hold do not undermine consistency.

We discuss this below and argue that such occurrences are likely to be relatively rare in practice.
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related with y − βx. and the other arguably uncorrelated with y − βz. This will yield

two sets of overidentifying restrictions. Assuming first lags (denoted by x−1 and z−1) are

available, the instruments we propose to use are, respectively, x, x3, and x−1 for z and

z, z3 and z−1 for x, choices we defend below.

3 Existing Literature

Perhaps the closest paper to ours in terms of the specifics of what it sets out to achieve is

that of Wilhelm (2019) who proposes a test for the existence of ME. Like us his sole focus

is consistent estimation of a single function of the data. However our starting position is

that ME does exist (our procedure would collapse if this were not true) and is non trivial

in terms of its impact on estimation. For survey data this is likely to be a very sound

pretext. Additionally the approach in Wilhelm is non parametric whereas our approach

is simpler and likely to be more familiar to empirical economists. Having said this if there

is doubt as to whether or not ME has a substantial impact on least squares estimates

then Wilhelm’s test could certainly be used in the first instance. A rejection would

naturally require a solution to the problem such as the one we propose here. Another

paper tangentially related is that of Anderssen and Moen (2015). Under the assumption

of uncorrelated ME’s they show how to optimally combine the two arguably consistent

estimates of β obtained from using z as an instrument for x and vice versa. In our paper

the crucial assumption that ME’s are uncorrelated is tested for not assumed a priori and

we use the GMM apparatus to obtain a single estimate of β when it is overidentified.

The use of functions of measures as instruments to surmount ME issues is of course

not new. In particular, Dagenais and Dagenais (1997) and Lewbel (1997) propose the use

of higher order terms in regressors as instruments. Both make strong assumptions on the

nature of ME inter alia requiring them to be classical. On the other hand their approach

does not require the existence of two measures. In a similar vein Erickson and Whited

(2002) use transformations of the regressor as instruments but they too require very strong

assumptions on ME - inter alia that the ME’s are classical in nature and uncorrelated

with each other. Unlike these papers we offer tests of the key assumptions validating

our procedure. A further novelty here is the simultaneous use of the two measures to

instrument each other in a “reflexive” manner.

We require inter alia that ME is classical in nature and the first test in our sequence

examines this. Bound et al. (2001) discuss the results of a number of ME validation
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studies which tend to suggest ME is not classical. We do not take a prior position on

whether or not these results generalise to wider contexts. We would hope that if ME was

non classical in any particular application then our test would signal this via a rejection.

Of course a failure to reject does not necessarily imply the absolute “truth” of the null.

It could also be consistent with a violation of the null that is too quantitatively small to

be of consequence.

4 Consistent Estimation of the OLS Parameter

In what follows we ignore controls in (1) and WLOG take all variables to have a mean of

zero. Adding controls does not - under reasonable assumptions - change what we present

here as we show in the annex. A baseline assumption in GMM is that all variables are

ergodic so that E(a)= plim(
∑N

i=1ai/N)= σa. Using this assumption we can couch the

discussion in terms of probability limits rather than expectated values.

We begin by re-examining the idea that consistent estimates of β may be obtained

by using x as an instrument for z (or vice versa) if ME’s are classical and uncorrelated.

A test of a composite null that implies the former is straightforward. Consider the OLS

regression

xij − zij = uij − vij = γyij + ϵij (13)

A t-test of γ = 0 7 (henceforth referred to as “TC”) is in effect a test of of a). More

properly, the null that w and ε are uncorrelated with both u and v implies

γ{ =
σxy − σzy

σyy

} (14)

=
1

σyy

{β(σwu − σwv) + (σuε − σvε)} = 0 (15)

This is a useful test but has a caveat. If x and z have a common additive element that

is non classical then differencing will wash that element out. If additionally the non

common components are classical then (large sample) power will equal size and the test

will be inconsistent. Whilst the idea that the null will fail purely because of common

components is rather pathological, the removal of such components via differencing may

7The investigator may cluster standard errors along dimensions that fit her priors about the nature

of ME correlation..
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reduce test power. 8 Notwithstanding this caveat TC is a useful test of classical ME and

whilst here we envisage using it as part of a test sequence it also stands alone as a device

to offer inference on the nature of the ME’s. Finally, as an alternative, we could use a

Fisher non parametric test (Fisher (1922)) to test independence of (x− z) and y instead.

Independence is stronger than the required zero covariance and the test would still suffer

the common elements issue highlighted above. However, many of the restrictions in the

composite null hypothesese we consider below are automatically satisfied if independence

holds so passing a Fisher test may well add power to our overall testing procedure.

Interestingly (14) shows TC to be the scaled up difference between two IV estimates

- one using x as an instrument for z and vice versa. A priori we might view such a test

as shining a light on the consistency of the two estimates; if they differ they cannot both

be consistent but if they do not differ they will be. However as we have discussed already

if σuv is non zero then both estimates are biased, a bias that as (14) shows cancels out

of the difference. Our strategy in this paper therefore is to augment TC with two other

tests that have uncorrelatedness of ME’s as part of a composite null. The two tests are

generated, respectively, by two sets of orthogonality conditions; one where instruments

based on x are used (for z) and the other where instruments based on z are used (for x).

We call these tests Tx and Tz. We test the overidentifying restrictions in each case. If

both tests fail to reject, we would then proceed to combine the two sets of instruments

into a single GMM procedure yielding a single estimate of β.

Here we examine the prior credibility of the overidentifying restrictions implied by

the validity of each instrument in the two groups. To do this we derive an expression for

the large sample estimate of β delivered by each instrument to expose the corresponding

restrictions on the underlying data moments that ensure consistency. We also need to

check that if instruments in a group are invalid they do not lead to the same biased

estimates of β. Were that to be the case an overidentification test would fail to diverge

and give misleading inference9.

Choosing appropriate instruments in any application is always a matter for heuristic

8There is also a danger that each covariance on the RHS of (15) is nonzero but that by chance

β(σwu − σwv) + (σuε − σvε) = 0. If we adopt a Bayesian perspective and think of the covariances as

free parameters drawn from some continuous distribution then this occurrence would be a set of measure

zero. However and as is always the case with composite nulls like these moments may be such that the

expression is close to zero and if so this will compromise small sample power.
9By examining potential differences in the β estimates delivered by each instrument in a set we are

alluding to the use of a Wald test of instrument validity. Below we use the J (LM) test not the Wald test.

However under the null, Wald and J are asymptotically equivalent. If Wald diverges (does not diverge)

then J will also diverge (not diverge)
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reasoning. Although here we test for instrument validity, we would still wish to propose

instruments that by prior reasoning have the greatest chance of being valid. By doing

so we minimise our exposure to type II error. With this in mind the instruments for

x(for z) we consider in the first instance are a lagged value of z(of x) (where lags are

available) and the level and third power of z(of x) respectively. Of course this list could

be expanded (second lags, fifth powers etc) but the current choice is sufficient to highlight

pitfalls and issues surrounding the use of such instruments in this context. The reason

for making odd rather than even powers the first port of call in the search for relevant

instruments is that the IV estimator will depend on the n+1th moment of w where n is

the power of the instrument. If this is zero - as would be the case if n is odd and w had

a symmetric pdf - the estimator is not defined. We avoid using own lags as instruments;

in many applications where lagged measures are available it is quite likely that the ME is

autocorrelated which would invalidate such instruments a priori.10 Finally in what follows

we always include z in the list of instruments for x and vice versa as in practice it is very

likely that they will be respectively strong instruments for each other. This inclusion

makes uncorrelatedness of the ME’s an intrinsic part of each null we test.

We now examine the limits of IV estimates of β derived from each of our suggested

instruments. We only provide results for z being instrumented; the formulae and corre-

sponding discussions may be symmetrically applied to the case where x is instrumented

instead. Equations (16) to (21) below give the large sample estimates of β arising when we

instrument z using a) x, b) x−1 and c) x3, We label these B1x, B2x and B3x respectively.

The corresponding null restrictions that imply consistency, R1x, R2x, R3x are given below

each respective case. It will become clear that the lessons learnt from using x3 and x−1 as

instruments would also apply were we to expand the set of instruments to include higher

10Below we test for ME autocorrelation by regressing x-z on its lag. This test is similar in construction

to TC .
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powers and higher order lags. In the formula below we use the fact that σwε = 0.

B1x = β +
σuε − β(σvw + σuv)

σxz

(16)

R1x : σuε = σuw = σuv = 0 (17)

B2x = β +
σu−iε + σw−iε − β(σvw−i

+ σu−1v)

σx−iz

(18)

R2x : σu−1ε = σw−iε = σvw−i
= σu−iv = 0 (19)

B3x = β +
σw3ε + σu3ε + 6σwu2ε + 6σw2uε − β(σu3v + σw3v + 6σu2vw + 6σw2uv)

σzx3

(20)

R3x : σw3ε = σu3ε = σwu2ε = σw2uε = σu3v = σw3v = σu2vw = σw2uv = 0 (21)

How reasonable a priori are the moment restrictions in equations (17), (19) and (21)

and are any so unlikely to hold that we would not wish to subject them to a test in the

first place? The moments may be split into two; those involving inter alia ε and w and

those involving only u, v and w and their lags. In most cases a priori reasoning would not

rule out the idea that u, v and w could be mutually uncorrelated and we might think that

this reasoning should extend to independence. As for moments involving inter alia w and

ε things are less favorable. Whilst we know that σwε is definitionally zero, σw3ε may not be

so; if w was exogenous then we would need the relationship between y and w to be linear

(or, in practice, approximately so) for it to hold. However it may be that whilst σw3ε = 0

is violated mathematically, the violation is not severe enough to generate quantitatively

important asymptotic estimation bias. Finally sufficient (but not necessary) conditions

for σw−iε = 0 to hold are that the ME’s are classical (an assumption separately examined

by TC) or that ε is non autocorrelated.

As we have seen already, if the only violation of the null was a nonzero correlation of

u and v, then using x as an instrument for z and vice versa produces identically biased

estimates. Therefore including the two corresponding orthogonality restrictions in the

set to be tested will compromise test power. It is for this exact reason that we keep

separate (Tx and Tz) rather than combine them into a single test. 11 To summarise whilst

the restrictions above may have different degrees of prior credibility depending on the

application, none are are so unreasonable that they should not even be subjected to a

test.

Assuming that there are sufficient relevant instruments to compute either or both of

11In simulation results not reported here but available on request we use the setup in the next section

to establish that a test sequence based on TC and a second test that combines the restrictions in Tx and

Tz offers considerably less power than the three test sequence proposed in this paper.
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Tx and Tz and if they, together with TC , fail to reject, we may then have enough confidence

in the composite null underpinning the three tests (the union minus the intersection of

their individual respective nulls) to combine the two sets of orthogonality conditions

underpinning Tx and Tz to obtain a single efficient estimate of β via GMM.

Before moving on we note an important feature of our tests exposed by the formulae

above. There are clearly some dimensions in which the null could fail that would not

undermine consistency of β. For example were σ3
uv = 0 in R3 to be the only element of

the null to fail, the corresponding (asymptotic) rejection would lead to the false inference

that consistent estimates of β are not obtainable when in fact they are. However, in most

of the cases like this above, there are relatively few economic contexts where failure of the

restriction would not go hand in hand with failure of uncorrelatedness. 12.Nonetheless we

should still consider our test to be conservative; In some circumstances it will err on the

side of finding against consistent estimation even when consistent estimation is possible.

5 A Simulation Study.

Above we proposed a diagnostic procedure based on the execution of three tests; TC (14),

Tx and Tz - assuming of course that suitable relevant instruments are available. If each

test in the sequence fails to reject its null then combining the instruments involved in Tx

and Tz in a single GMM procedure would produce an estimate of β that was credibly

consistent. Here we assess the power of this diagnostic procedure to detect biases of

various magnitudes arising when the composite null underlying the three tests is violated.

The test bed for our experiments is

yi = βwi + εi (22)

wi = ρwi−1 + ξi (23)

xi = wi + ui where (24)

ui = (u∗
i + γuεi + δuξi)/ku (25)

zi = wi + vi where (26)

vi = (v∗i + γvεi + δvξi)/kv (27)

i = 1, , , N (28)

12One key counterexample here may be ARCH behaviour in financial applications
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Where εi, u
∗
i , v

∗
i and ξi are iid mean zero exponential 13 with unit variance. The

parameters kx and kz normalise the variance of ui and vi to one in each simulation.

Asymptotically relevant instruments that we use to generate our tests statistics are z, z−1

and z3 for x and z, x,−1 and x3 for z. 14 The compound null hypothesis of the test

sequence is

γu = γv = δu = δv = 0 (29)

Under this null, ME is classical and our instruments are valid. The most obvious

problem in the context of a sequence of tests is controlling for size15 of the procedure

as a whole. If we are able to conduct the complete test sequence and if the tests were

independent then using the standard significance levels of 5% would result in an overall

size of the test procedure of about 14%. If the (three) tests were perfectly correlated

the size would be 5%. This oversize problem is hardly unique to our current context;

investgators have always used batteries of tests to assess the validity of their IV procedures.

Nonetheless we propose to counter the the size issue by adopting confidence levels of 2.5%

for each of the three tests.

Another issue - again not unique to our context - is that relevant instruments may

not exist. In all of our simulations x(z) is a strong instrument for z(x). This is something

we feel is likely to be a common occurrence in the data. The significance (relevance) of

the lag and cube terms is a different matter. Although the experiments are configured so

that these instruments are always strong in large samples, for small samples they may not

be. Therefore in each experiment we compute an F test for the relevance of the additional

instruments for x and z respectively. If one of these has a p-value above 5% 16 then we do

not proceed to compute the corresponding J test and in that simulation the number of tests

in the sequence is reduced from three to two. If neither F test for additional instruments

passes at the 5% level then we do not proceed at all and that particular simulation will be

dropped from the results. These actions mimic those that empirical investigators would

take in any application - no investigator should invoke overidentification tests with weak

13Using exponential rather than normal pdf’s and adopting the AR(1) structure for w was important

to ensure that the relevance of these instruments.
14Including terms in higher powers and lags of x and z would preclude analysis of power for small N

such as the case of N=50 we include below.
15Here ”size” is the chance we reject the composite null of the three tests when that composite null is

true.
16Switching to a criterion of 1% did not alter the power estimates much but it did reduce the proportion

of cases we could execute our test sequence in small samples.
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(additional) instruments. We re-emphasise that regardless of the existence of a sufficient

number of relevant instruments TC may always be executed. If this test fails to reject we

may have some confidence in the hypothesis that ME’s are classical in nature which in

turn could reveal information about the likely sign and magnitude of the bias in β.

Before we discuss and defend our choice of γ′s and δ′s used for the simulations

we note an important feature of the current investigation. The null hypothesis is not

of any intrinsic economic interest. By contrast the size of the estimation bias caused

by its violation is of paramount concern. This in turn will depend on the estimation

method used. Typically either Twostep GMM (TSGMM) or Iterated GMM are used in

empirical work. Both methods offer asymptotically efficient estimates but for reasons

of computational efficiency we use the former. For each parameter configuration under

the alternative hypothesis therefore, we compute the (absolute value of the proportional)

TSGMM asymptotic17 bias. This helps us assess the criticality of power in each parameter

scenario; there is little cost of low power in scenarios where estimation bias is also low

but high cost in scenarios where bias is high.

Because of the normalisations in (25) and (26) the signal to noise ratio in x and z is

constant. The standard deviation of ME is about 40% of that of w. This roughly matches

the ME reported for median size states in the annual LAUS data we use in the empirical

application below (see https://www.bls.gov/lau/lastderr.htm). In sensitivity analyses we

found that moderate increases/decreases in the ME standard deviation had little effect

on the results we present here. We present reults for eleven parameter configurations

and five sample sizes. The parameter configurations are represented by the row vector

P (γu, γv, δu, δv) . There are three qualitatively distinct cases.; a) the cases where viola-

tions of the null are due entirely to common components in the two ME’s - P2, P6, P7 and

P11 in the table below, b) the cases where violations of the null are only partially due to

common components in the two ME’s - P4, P5, P9 and P10 and c) where violations of the

null are due to components that are not common to the two ME’s - P3 and P8. Finally

scenario P1 estimates size of the test sequence. The results for the 11 configurations are

presented in Table 1.

The results for P1 show that test size in large samples is marginally oversized at

around 7% but my be as high as 10% in small samples. Turning to power, cases in a) -

although rather pathological - allow us to assess what happens when TC is inconsistent

17An alternative is to estimate the average bias for each sample size. As a sensitivity check we did this

for N = 50 in cases P6 and P11. The results were little different to the asymptotic biases given in the

Table.
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and the overall power of the sequence rests largely on TX and TZ . We see that power is

quite low for sample sizes below 100. Whilst this is of only modest concern in P2 and

P6 where asymptotic bias is relatively low, it is of serious concern in P7 and P11. In the

latter two cases the J tests (TX and TZ) seem to require sample sizes of around 500 to

have reasonable power. However cases b) and c) display reasonable power even in small

sample sizes.

Table 1: Simulation Results

N

50 100 250 500 1000

P1 = (0, 0, 0, 0) Bias = 0% 9.3 7.9 7.2 7.2 7.0

P2 = (.5, .5, .5, .5) Bias = 12% 18.4 21.6 33.0 57.4 88.0

P3 = (.5,−.5, .5,−.5) Bias = 2% 99.1 100 100 100 100

P4 = (.5,−.5, .5, .5) Bias = 23% 75.2 100 100 100 100

P5 = (.5, .5, .5,−.5) Bias = 24% 57.2 87.4 100 100 100

P6 = (−.5,−.5,−.5,−.5) Bias = 18% 8.8 17.5 22.5 53.3 79.4

P7 = (1, 1, 1, 1) Bias = 19% 33.2 45.6 79.2 95.3 100

P8 = (1,−1, 1,−1) Bias = 2% 100 100 100 100 100

P9 = (1,−1, 1, 1) Bias = 44% 97.2 100 100 100 100

P10 = (1, 1, 1,−1) Bias = 48% 100 100 100 100 100

P11 = (−1,−1,−1,−1) Bias = 39% 17.1 32.7 67.7 93.5 100

Notes: “Bias” is the absolute asymptotic TSGMM bias of each of the 11 Cases. N is the

number of observations and pr is the proportion of times at least one of TC , Tx and Tz reject at

the 2.5% level of significance.

It is hard to be definitive from any numerical exercise. But these simulations indicate

that - apart from pathological cases where violations of the null are entirely down to

common ME components - the test sequence we propose is a useful diagnostic tool even

in samples as small as 50.

6 Two Empirical Applications

We apply our test sequence and proposed estimations to two empirical scenarios. First

we analyse the two wage cyclicality estimates obtained from using HP filtered GDP and

the aggregate unemployment rate and second we analyse the comovement of burglaries
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with state level unemployment rates in the US as measured by the LAUS. The latter

exercise highlights the ME issues arising when using state unemployment measures from

the the LAUS. There we artificially generate two noisy measures of state unemployment

by randomly assigning county level unemployment rates to two subsamples. The former

application is more of a latent variable exercise. It asks the question “given that the

business cycle is an intrinsically unobserved variate, can we reconcile two estimates of

wage cyclicality from two distinct measures of the cycle?”

6.1 The Cyclical Component of Incumbent Wages

There is a huge literature on estimating the cyclical component of wages (See for example

Barsky et al. (1994) and, more recently, Devereux and Hart (2006)). In most of these

studies the aggregate rate of unemployment is used as the cyclical measure. However the

business cycle is an intrinsically unobserved variable. For example GDP may be used to

derive a cyclical indicator rather than unemployment. Here we revisit this literature by

treating HP filtered GDP and aggregate unemployment as two separate noisy measures

of the business cycle. Strictly speaking this is more in the spirit of a latent variable

application than one of ME but we adapt it to our template.

We treat the aggregate unemployment rate and HP filtered log GDP as noisy mea-

sures of the cycle. Following the literature, we estimate a specification in first differences

and refer to the change in unemployment as x, the change in the HP variate as −z, and

the composition corrected aggregate real wage growth as y.18 We normalise z to have

the same standard deviation as x and take its negative value. This ensures that the co-

movement of wage growth with x is comparable with that of z and that β is scaled in

the traditional way as a cycical response of real wages to percentage point changes in the

unemployment rate.

We wish to obtain a composition-bias-free estimate of aggregate real wage growth.

To this end we use the hourly real wage data of stayers from the PSID between 1980

and 2019 to estimate a Mincer regression19 of wage growth on a quadratic in tenure and

18We use a smoothing parameter of 6.25 which Ravn and Ulhig (2002) argue is optimal for annual US

GDP data. We refer in the text to “real wage growth”. More formally this is the change in the lof of real

wages. We deflate wages by the CPI.
19We use the PSID weights in this first stage and focus solely on the wages of heads of households. We

drop cany hange in log wage that exceeds 1.0 from the sample. In 1998 the survey becomes bienial. For

those later years we take changes over two years divided by two for all of the regressions. This weakens
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experience (measured by worker age minus 16) plus year and state fixed effects. The year

fixed effects are then extracted and in a second stage used as the y variable. This variable

is a time series of arguably composition-free aggregate wage growth. In a second stage

we use this time series to estimate cyclicality via OLS, IV and GMM - as per the analysis

above - using the number of data points in each yearly cross section as weights. (See

Stockman (1983) and Barsky et al. (1994), who also use this two step method). 20 We

apply the HP filter to the log of real GDP and then first difference to obtain z. Finally we

should note that the PSID wage measure (and many other survey based wage measures)

is itself subject to a high degree of ME. Referring to validation studies, Kim and Solon

(2005) argue that the ME in the PSID reverts to mean. They suggest that PSID derived

cyclicality estimates have to be inflated by 50% to compensate. The implications for our

application are not severe; ME of this nature impinges equally on estimates of β from

both of our cycle measures and we may adjust the final single GMM estimate of β we

derive appropriately to allow for it.

A major issue with this literature is the scarcity of annual time series observations

available - the 30 or so we have here is actually large relative to many studies in the area.

One consequence is that test power may be low so results here should be interpreted with

caution. More directly it means we cannot undertake a full exploration of relevant instru-

ments in the manner of the last section. Instead we estimate two first stage regressions

each for x(z) - one using z and z−1 (x and x−1) as instruments and the other using z and

z3 (x and x3) as instruments respectively. As before we keep the level of x(z) but select

the extra instrument (lag or third power) on the basis of statistical significance. The first

four lines of Table 3 below give the relevant t-tests denoted intuitively as tab where a is

the variable being instrumented and b is the instrument. The results show clearly that

for x the lag is preferred over the cube whilst for z it is the cube term that dominates.

The results for the corresponding J tests and for TC are given in lines 5 to 7 of Table 2.

the strength of lagged instruments somewhat but we see below that a lagged HP term is a highly relevant

instrument for unemployment.
20If the number of annual cross sectional data points is large then this method delivers the same

estimate of wage cyclicality as direct panel estimation. It is computationally convenient here where we

use a GMM estimator.
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Table 2: The Cyclicality of Real Wages

Test Value p-Value

txz−1 2.621 0.015

txz3 0.902 0.376

tzx−1 1.748 0.094

tzx3 2.386 0.025

TC 0.877 0.387

Tρ 0.177 0.865

Tx 0.876 0.349

Tz 0.069 0.793

Estimates of β

OLS(x) −0.728

(0.257)

OLS(z) −0.551

(0.242)

GMM −0.891

(0.204)

Notes: Robust standard errors in parentheses.

Each of the overidentification tests passes very comfortably. Even factoring in the

small sample size these test statistics have very high p-values. This offers some reassur-

ance that IV delivers consistent estimation of β. The bottom half of the table gives the

estimates of wage cyclicality. The results from OLS conflict; whilst both are significant

the standard (unemployment rate) semi elasticity is .72 whilst the estimate from the HP

cyclicality measure is around .55. The GMM estimate is larger (in absolute value) than

both the OLS estimates - substantially so in the case of the HP measure.

6.2 The Comovement of Within State Unemployment and Bur-

glaries

There has always been an interest in the links between economically motivated crime and

unemployment. A notable paper in this area is Raphael and Winter-Ebmer (2001). Using
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data from 1971 to 1997 and a specification in levels, they find a significant -arguably

causal - link between property crime and state level unemployment using state level oil

shocks as instruments for unemployment. Here we are less ambitious. We merely want to

use this context as a test bed for the impact of measurement error on the comovement of

state unemployment and state crime and will not attempt to identify any causal effects.

However, and in contrast to Raphael and Ebmer, we adopt a first differences specification

to remove state fixed effects and stochastic and determininstic trends whose presence may

otherwise lead to spurious correlation21.

The FBI collect three measures of economically motivated crime; Auto Theft, Rob-

beries and Burglaries. We focus on the last of these because burglaries are arguably more

driven by local economic factors. By contrast Auto Theft and Robberies are increasingly

dominated by organised crime networks (see for example the discussion in Longman (2006)

and may therefore be more related to US wide factors22. As we have noted already the

LAUS are subject to severe ME with the standard deviation of ME often being as much

as 40% of that of the true measure. This and the biases it implies are rarely acknowledged

in the literature. 23 The exercise here is to assess its impact on the OLS estimate of state

unemployment on burglaries.

To obtain two measures of state unemployment we split each state’s counties into

two bins according to their position in the alphabet making sure that each bin ends up

with approximately the same population.24 The unemployment rate for each of the two

bins in each year is computed, first differenced and - to keep the core analysis of the paper

firmly to the fore - we call these measures x and z. The (change in log of the) number of

burglaries we denote by y and (the change in the) true unobserved state unemployment

rate by w. It is unlikely that the position in the alphabet of county names is related

to either burglaries or economic outcomes so our splitting of counties into two groups is

21Adding year fixed effects to a levels specification may control for a single stochastic trend but it will

not be effective if two or more such trends are present.
22Experimentation with Auto Theft and Robberies suggested no relationship with state level unem-

ployment rates whatsoever; coefficients varied in sign, were closer to zero and less significant than the

OLS results for Burglaries. Of course if β really was zero as may be the case for these two crimes, there

is no attenuation bias to worry about.
23For an example of a recent use of LAUS see Grigsby et al. (2021) Using LAUS’ state unemployment

measure as a regressor they find very low wage-unemployment elasticities and little difference between

new hires and incumbents. This may in part be due to attenuation bias arising because of the high degree

of ME in the LAUS statistics.
24For the first bin - leading to measure x, we start with the county earliest in the alphabet and keep

adding counties in alphabetical order until the population covered reaches (or exceeds) one half the state

total for that year. The remining counties go into the second bin - leading to measure z.
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likely to be “at random”25

If we observed w we would aim to estimate

yit = α + βwit + Y FX + εit

i = 1, ..50..t = 1991...2019

for states i26 and years t by OLS where “Y FX” denotes year fixed effects, included

to absorb US wide macro effects particularly the aggregate rate of unemployment. The

set of instruments used follows the procedure used in the simulations. We regress x(z) on

the level, the lag and cube of z(x) The level of x(z) is always included but We only include

the additional two instruments if they are jointly significant at the 5% level. The two F

tests for the latter, F x and F z , are given in the first two lines of Table 3. 27 The results

show that whilst the extra two instruments are highly significant in explaining z there

seem to be no overidentifying instruments available for z. Whilst it is hard to explain

why the two series display such different properties it is not fatal for our procedure; we

may still evaluate TC and Tx. The third and fifth lines of Table 3 respectively give these

tests. For completeness we also test for first order autocorrelation of the ME’s. 28 To

do so we follow the logic behind TC and regress x − z on its lag. Tρ in line four of the

table gives the corresponding t-ratio and p-level. The remaining lines in the table give

the estimates of β obtained using OLS on the measures and the GMM estimate obtained

combining the two sets of orthogonality conditions.

25An alternative would have been to use computer generated random numbers to split counties. How-

ever the results from this procedure would depend on our own choice of random number seed. Using the

alphabet is more transparent and facilitates replication.
26The state index i is incomplete; it excludes Alaska, District of Columbia and Rhode Island because

these states had insufficient counties to conduct a randomised split.
27Year fixed effects are removed from x, and z prior to transformations.
28If the ME’s are white noise then own lagged values are also potentially valid instruments
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Table 3: Burglaries and State Unemployment Rates

Test Value p-Value

F x
2,27 0.460 0.637

F z
2,27 5.900 0.0075

TC 1.022 0.316

Tρ 1.252 0.221

Tx 3.293 0.193

Estimates of β

OLS(x) 0.502

(0.424)

OLS(z) 0.364

(0.437)

GMM 1.072

(0.412)

Notes: Year fixed effects included. Standard errors are clus-

tered by state.a

aIn the Annex we discuss the use of clustered standard errors in

our current context. The assumptions required for clustered stan-

dard errors to offer valid inference are stronger than those normally

required.

The test for Classical ME (TC) passes comfortably with a p value around .6. The

autocorrelation test has a p-value of around .2 which is quite low. This justifies to some

extent our use of x−1 (z−1) as an instrument for z(x) rather than z−1(x−1) - autocorre-

lation of ME’s would invalidate the use of own lags as instruments a priori. The J-test

of instrument validity (Tx, here a χ2
2) passes comfortably. The OLS results display coef-

ficients of around .5 but are not particularly significant. The estimate of β from GMM

is 1.07 and significant. The low p-value for TC combined with the relatively low and in-

significant (high and significant) OLS(GMM) estimate are strongly indicative of classical

attenuation bias. In sum, these results indicate significant comovement of (the change in

the log of) burglaries with the (change in the) state unemployment rate - a comovement

not picked up in OLS regressions29. These results and those for wage cyclicality above all

29The OLS estimate using the LAUS measure itself was - like those for x and z - around .5 and

insignificant. We expand on this point below in the summary and conclusion
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point in the same direction. There seems to be attenuation bias in OLS estimates of β in

both applications. Tests indicate validity of instruments (x for z and/or vice versa) and

use of these instruments raises the estimated β substantially.

7 Summary and Conclusion

In this paper we have proposed a sequence of tests and estimations to gain consistent

estimates of the OLS parameter (β) of y on an unobserved regressor w using two noisy

measures of the regressor x and z. The approach is novel because the proposed GMM pro-

cedure uses functions of x as instruments for z and simultaneously vice versa. The three

test statistics have a composite null (the union minus the intersection of the three respec-

tive nulls of instrument validity) whose “truth” ensures that system GMM consistently

estimates β. In a standard setting - one with heterogeneous responses - overidentification

tests cannot be used to assess instrument validity because different instruments lead to

different weighted averages of the responses even where the instruments themselves are

valid. Here our instruments are targeting a single entity, namely β the OLS estimate of

y on w so this issue does not arise. Indicative simulations suggest the test sequence has

reasonabbe power even in small samples except in the somewhat pathological case where

the violation of the null is due solely to the existence of common additive components in

the two ME’s. Two empirical applications - one estimating the co-movement of burglaries

and state level unemployment and the other estimating the co-movement of wages with

a business cycle latent variable - illustrate the procedure. In the applications we find

strong evidence of attenuation bias. The final estimates are higher in absolute value in

both applications suggesting that our procedure corrects for attentuation bias or at least

attenuates it.

We close with a note about the random sampling of county unemployment rates in

the burglary application. In results not presented here, we found that OLS estimates using

the standard state LAUS measures are similar in size and significance to those from the

two constructed measures. By contrast our use of IV with these two measures raises the

estimated β. This suggests that when using LAUS data as regressors one could potentially

improve the estimated regression coefficients with some kind of random sampling such as

that attempted here. Of course the sampling method we chose - based on alphabetical

ordering of counties - is not unique. It would be interesting to analyse the use of a more

systematic method based on a complete set of random samples from the counties in a

jacknife-style procedure. Future work may go in this direction.
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8 Annex

8.1 Allowing for Controls

To conserve notation we amend the model to allow for a single control variable qi but

the arguments easily extend to multiple (linear) controls). We wish to orthogonalise the

instruments and y with respect to q. The simplest way to achieve this would be to regress

each variable on q and use the residuals for the analysis. However we are using powers

of x and z as instruments and it may be preferable to remove the first order effect of

q from x and z before transforming them - as we do in the empirical application. This

requires us to make stronger assumptions than would a standard orthogonalisation. The

assumptions are given below. Intuitively they require that q enters the model only via a

linear term. 30Having said all of this, the results below are easily adapted to the simpler

case of orthogonalising all the instruments used directly.

Equations (54) to (57) give the amended model plus auxiliary assumptions..The idea

is to show that if we replace x, z etc with their orthogonalised counterparts, our original

orthogonality conditions have exactly the same form. Equation (57)((58)) defines w⊥
i (y

⊥
i )

as the large sample orthogonal projection of w(y) on q. As noted above the auxiliary

assumptions in (39) effectively say that only q itself enters the model. Equations (59)

to (61) define the finite sample orthogonal projections of y, x and z respectively on w in

terms of their large sample counterparts plus the sampling errors. Our intention is to use

x̂ and ẑ (and their lags and cubes) together with ŷ in exactly the same way as we used

x, z and y in the text. That is we show that in large samples the results derived in the

text for x, z and y also hold true for x⊥
i , z

⊥
i and y⊥i .

30The results here generalise to many controls so adding lags or higher order terms in q - where deemed

necessary - is not an issue.
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yi = βwi + γqi + εi (30)

xi = wi + ui (31)

zi = wi + vi (32)

wi = αqi + w⊥
i (33)

y⊥i { = yi − δqi} = βw⊥
i + εi where δ = αβ (34)

ŷi = yi − δ̂qi = y⊥i + (δ − δ̂)qi (35)

x̂i = xi − α̂xqi = x⊥
i + (α− α̂x)qi = w⊥

i + (α− α̂x)qi + ui (36)

ẑi = zi − α̂zqi = z⊥i + (α− α̂z)qi = w⊥
i + (α− α̂z)qi + vi (37)

where plim(α̂x) = plim(α̂z) = α and plim(δ̂) = δ (38)

Assumption31 : ui, vi and w⊥
i are independent of q (39)

N− 1
2 x̂i(ŷi − βẑi) (40)

= N− 1
2x⊥

i (y
⊥
i − βz⊥i ) + A where (41)

A = {N
1
2 (α− α̂x)N

1
2 (δ − δ̂)}{N− 3

2 q2i }+ {N
1
2 (α− α̂x)}{N−1y⊥i qi} (42)

−β{N
1
2 (α− α̂x)N

1
2 (α− α̂z)}{N− 3

2 q2i } − β{N
1
2 (α− α̂x)}{N−1z⊥i qi} (43)

(44)

N− 1
2 x̂i−1(ŷi − βẑi) (45)

= N− 1
2x⊥

i−1(y
⊥
i − βz⊥i ) +B where (46)

B = {N
1
2 (α− α̂x)N

1
2 (δ − δ̂)}{N− 3

2 qiqi−1}+ {N
1
2 (α− α̂x)}{N−1y⊥i qi−1} (47)

−β{N
1
2 (α− α̂x)N

1
2 (α− α̂z)}{N− 3

2 qiqi−1} − β{N
1
2 (α− α̂x)}{N−1z⊥i qi−1} (48)

N− 1
2 x̂3

i (ŷi − βẑi) = (49)

N− 1
2x⊥3

i (y⊥i − βz⊥i ) + C where (50)

C = {[N
1
2 (α− α̂x)]

3N−2q3i + 6[N
1
2 (α− α̂x)]

2N− 3
2x⊥

i q
2
i + 6[N

1
2 (α− α̂x)]N

−1x⊥2
i qi}(51)

{y⊥
i +N

1
2 (δ − δ̂)N− 1

2 qi − βz⊥
i − βN

1
2 (α− α̂z)N

− 1
2 qi}+ (52)

x⊥3
i {N

1
2 (δ− δ̂)N−1qi −βN

1
2 (α−α̂z)N

−1qi} (53)

31Independence is stonger than is needed here, However we do require a slew of zero correlations

between lags and powers of u, v, w and q so adopting the independence assumption adds clarity..
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yi = βwi + γqi + εi (54)

xi = wi + ui (55)

zi = wi + vi (56)

wi = αqi + w⊥
i (57)

y⊥i = yi − δqi = βw⊥
i + εi, where δ = αβ (58)

ŷi = yi − δ̂qi = y⊥i + (δ − δ̂)qi (59)

x̂i = xi − α̂xqi = w⊥
i + (α− α̂x)qi + ui (60)

ẑi = zi − α̂zqi = w⊥
i + (α− α̂z)qi + vi (61)

where plim(α̂x) = plim(α̂z) = α, plim(δ̂) = δ (62)

Assumption 32: ui, vi, and w⊥
i are independent of q

N−1/2x̂i(ŷi − βẑi) = N−1/2x⊥
i (y

⊥
i − βz⊥i ) + A, where (63)

A = N1/2(α− α̂x)N
1/2(δ − δ̂)N−3/2q2i (64)

+N1/2(α− α̂x)N
−1
∑

y⊥i qi (65)

− βN1/2(α− α̂x)N
1/2(α− α̂z)N

−3/2
∑

q2i (66)

− βN1/2(α− α̂x)N
−1
∑

z⊥i qi (67)

N−1/2x̂i−1(ŷi − βẑi) = N−1/2x⊥
i−1(y

⊥
i − βz⊥i ) +B, where (68)

B = N1/2(α− α̂x)N
1/2(δ − δ̂)N−3/2

∑
qiqi−1 (69)

+N1/2(α− α̂x)N
−1
∑

y⊥i qi−1 (70)

− βN1/2(α− α̂x)N
1/2(α− α̂z)N

−3/2
∑

qiqi−1 (71)

− βN1/2(α− α̂x)N
−1
∑

z⊥i qi−1 (72)

N−1/2
∑

x̂3
i (ŷi − βẑi) = N−1/2

∑
x⊥3
i (y⊥i − βz⊥i ) + C, where

(73)

C =
[
N1/2(α− α̂x)

]3
N−2q3i (74)

+ 6
[
N1/2(α− α̂x)

]2
N−3/2x⊥

i q
2
i (75)

+ 6N1/2(α− α̂x)N
−1x⊥2

i qi (76)

×
[
y⊥i +N1/2(δ − δ̂)N−1/2qi − βz⊥i − βN1/2(α− α̂z)N

−1/2qi
]
(77)

+ x⊥3
i

[
N1/2(δ − δ̂)N−1qi − βN1/2(α− α̂z)N

−1qi
]

(78)
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Equations (40),(45) and (49) are the counterparts to the empirical moments in the

text where x, x−1 and x3 are used to instrument for z. Symmetric analogue forms that

arise when we use z to instrument x follow straightforwardly. Equations (63),(68) and

(73) recast the moments in the text in terms of the large sample orthogonalised variates

plus A,B and C respectively but it is easy to see that the latter disappear asymptotically.

Under assumption (39) we can see clearly that A and B are o(1). As for C inspection of

each product shows that the highest order of probability terms arise from the summed

products of the terms in bold in (51) and (52) and all the terms in (78). The assumption

(39) ensures that these terms too are o(1).

8.2 Nonsingularity of the Variance of the Orthogonality Condi-

tions

GMM requires nonsingularity of the covariance matrix of the orthogonality conditions

which we call V . With a slight abuse of notation in this subsection we denote the Nx1

vector of observations on xi as x etc. Then the matrix V can be written as

V = E{QS2Q
′} where

Q
′

= [x
′ |x′

−1|x3′|z′|z′

−1|z3
′
]

S =
A 0

0 B

where A and B are the following 3Nx3N matrices

A = diag(ε− βu) and B = diag(ε− βu)

Unfortunately computing V is not straightforward in our framework. Even if the

elements in ε− βu are iid we cannot write V = E{Q[E{S2}]Q′}. However we can check

for nonsingularity in the simple but canonical case when Q
′
= [x

′|z′
]. If V is nonsingular

here we may be confident that any failure of the assumption to hold in our more general

settings is unlikely to be a consequence of our use of reflexive instruments. In this case

V is

V = V cov{N− 1
2xi(yi − βzi)|N− 1

2 zi(yi − βxi)}
′

To illustrate, we show that V is nonsingular under the (strong) assumption that u, v
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and ε are iid. In this case

V =

(
A+B A

A A+ C

)
where A = β2σvvσuu + σwwσεε

B = β2σuuσww + σvvσεε

C = β2σvvσww + σuuσεε

As both B and C are both strictly positive V here is positive definite. Obviously the iid

assumption is very strong but we use it to make a point; If in any application V does

turn out to be nonsingular it would not be a generic consequence of the use of reflexive

instruments.

8.3 Clustered Standard Errors

To be able to estimate V (and hence compute standard errors) we need to impose a suffi-

cient number of zeros on the cross correlations of elements in the orthogonality conditions.

The industry standard method is to impose these zeros via a clustering assumption on the

equations’ errors. An implication of standard clustering is that if ak and bl are respective

elements in the two othogonality conditions N
1
2

∑N
i=1 ai and N

1
2

∑N
i=1 bi that sit in differ-

ent clustering units (e.g. different firms k and l or time periods k and l) then E{akbl} = 0

is being assumed/imposed. Clustering also imposes the same condition on ak and al i.e.

on elements within an orthogonality condition. For our choice of instruments it is easy to

show that a sufficient condition for clustering to be valid is that u, v and ε are indepen-

dent of each other and of w across different cluster units. Whilst this condition is slightly

stronger than is needed, distinguishing between it and the minimal level of dependence

we need to hold in any empirical application is unlikely to be a desirable exercise.
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