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Abstract

We analyze the social and private learning at the symmetric equilibria of a queueing
game with strategic experimentation. An infinite sequence of agents arrive at a server
which processes them at an unknown rate. The number of agents served at each date
is either: a geometric random variable in the good state, or zero in the bad state.
The queue lengthens with each new arrival and shortens if the agents are served or
choose to quit the queue. Agents can only observe the evolution of the queue after
they arrive, thus each agent solves the experimentation problem of how long to wait
to learn about the probability of service. The agents, in addition, benefit from an
informational externality by observing the length of the queue and the actions of
other agents. There is also a negative payoff externality as those at the front of the
queue delay the service of those at the back.
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1 Introduction

We study a game of strategic experimentation that has both payoff and information ex-
ternalities. A sequence of individuals arrive over time and join a queue for service. This
queue grows at each new arrival and shrinks if service occurs or if an individual decides to
stop waiting and leave. Individuals arrive uncertain about whether service occurs, because
in the bad state of the world there is no service, but once in the line can observe the service
events as well as the behaviour of all other agents in the queue.

As she waits in line without observing service, an individual revises downwards the
likelihood she attributes to service ever occurring. This is the usual private learning that
occurs in strategic experimentation models. In the standard exponential bandit problem
a single agent would decide how long to wait for a reward/service before giving up and
taking an outside option. This aspect is also present in our model. Additionally, the be-
haviour of other agents in this game is itself a source of information. This social learning
takes two different forms. Once in the queue, individuals learn from the behaviour (leave
of keep queueing) of those ahead of her in the queue. For instance, observing an agent
ahead of her leaving the queue is bad news about the state of the world. Social learning
also occurs when the individual arrives at the queue. The service state determines the
stochastic process followed by the queue lengths, so the length of the queue when she
arrives is informative about this state.

Our main results are as follows. We find a class of strategies that combine herding and
experimentation in a natural way. We establish the existence of a symmetric equilibrium
in such strategies when agents are sufficiently patient, and describe the equilibria obtaining
when agents are less patient. Depending on the discount factor, equilibria can take two
qualitatively different forms. When agents are sufficiently patient they are willing to let
queues grow very long. These queues can be very informative, and certain queue lengths
perfectly reveal the state of the world to new arrivals. This is not the case when agents are
less patient. Agents are then unwilling to let the queues grow long and no queue length
can perfectly reveal the state.

The equilibrium properties also depend on the rate at which service occurs in the
good state. If the (good state) rate of service is greater than the arrival rate (so that
queues tend to empty out), we find that in equilibrium there are positive spillovers in the
experimentation decisions. That is, the individuals in the queue tend to experiment for
longer than they would have in the corresponding single-agent decision problem. This is
because short queues signal a good state of the world and cause an individual arriving
first in line to revise upwards her belief in the good state. This increased waiting time is
good for social learning, because many other agents will be able to benefit from the first in
line’s experience. However, the tendency of queues to empty out is bad for social memory.
Every time the queue clears the social memory is reset and individuals have to re-learn
what past generations may already have learnt. Ultimately the equilibrium in this case
does not get close to efficiency.

In contrast if (in the good state) the arrival rate is greater than the service rate, there are
negative spillovers in the experimentation decisions. Individuals early in line experiment
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less than they would have in the single-agent problem, which is bad for social learning.
However, the tendency of queues to fill up in this case implies that once the state is known
to be good the queue will tend to persist for long periods of time without clearing. Social
memory is therefore excellent. As a result the equilibrium behavior can be close to efficient.

1.1 Related Literature

The model we study formalizes a problem that arises in many contexts. This is a situation
faced by most of us as we approach counters for service or as we wait for taxis in unfamiliar
places: are short queues a good sign because they indicate a high service rate, or a bad sign
because informed individuals know not to queue but go straight to the outside option? This
problem also arises in many non-economic situations1 (queueing for service in computer
and communication networks, pipeline scheduling).

There is a vast literature on strategic behaviour in queues (see Hassin and Haviv (2003)
for a summary) and it is well known that in queues operating under a first-in-first-out
(FIFO) regime an individual who decides to join the queue imposes a negative payoff
externality on those behind her (see Hassin (1985)). Research most closely related to
ours considers the question of herding and social learning (Banerjee (1992), Bikhchandani,
Hirshleifer, and Welch (1992), Smith and Sørensen (2000)). In the context of queues
Debo, Parlour, and Rajan (2012) consider a model in which the length of a queue reveals
agents’ private information about the quality of a product, and explore a firm’s incentive to
manipulate the service rate or (in Debo, Rajan, and Veeraraghavan (2012)) prices. Eyster,
Galeotti, Kartik, and Rabin (2013) study herding when a sequence of agents have the
choice between two actions, and bear a congestion cost determined by how many agents
have previously chosen the action. In all these models, queues serve to add a cost to herding
and all learning is done prior to the individuals’ decision whether to join the queue or not.
Once an individual has made this decision, she cannot revoke it, and there is no further
learning, public or private.

Strategic experimentation with information externalities has been widely studied (Bolton
and Harris (1999), Keller, Rady, and Cripps (2005), Murto and Välimäki (2011)) and there
is a recent literature on experimentation with direct payoff externalities (Strulovici (2010),
Thomas (2013)). This paper attempts to consider both types of externalities simultane-
ously. While combining these externalities leads to many analytical difficulties in general,
queues provide a tractable structure within which this problem can be studied.

In the queue setting we are also able to make a distinction between social learning and
social memory. The current size of the queue and the current behaviour of those in the
queue generate an informational externality giving rise to social learning. However, in our
model there are events that can destroy the accumulated knowledge of everyone in the
queue. This can happen if the entire queue is served and clears, or if all agents in the
queue leave en masse. After such events, the new arrivals find themselves in a world where
there are no agents to learn from and there is no record of what went on before. The
social record was obliterated. These events can happen with positive probability so that

1See Percus and Percus (1990) or Chaudhry and Gupta (1996) for examples.
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in this game learning never stops. We define social memory to be the persistence of the
social learning, and the frequency of the events thus resetting social learning determines
the social memory. Similar issues, although in a different context, have been discussed in
Herrera and Hörner (2013).

Finally, in our equilibria, information can aggregate “in waves”: in between informa-
tional cascades and ensuing herds, there will be periods of relative inactivity during which
learning occurs gradually. Our model shares this feature with Bulow and Klemperer (1994),
Toxvaerd (2008) and Murto and Välimäki (2011).

The layout of the paper is as follows. In Section 2 we set up our discrete-time queuing
model. In Section 3 we describe each individual’s experimentation problem. Section 4
discusses the inefficiencies that arise in this game. Section 5 provides the main result of
the paper. We establish the existence of a symmetric equilibrium when individuals are
sufficiently patient. We describe the social learning process as a function of the arrival
rate of rewards in the good state and of agents’ impatience. We discuss social memory in
Section 6 and directions for further research in Section 7.

2 The Model

We start by describing the queue. A single-server queuing model is described by two
processes: one governs the arrival of individuals, the other determines when they are
served. Below we will describe the details of the arrival process and the two different
service processes that may occur in our model, depending on the server state. We then
describe the agents’ beliefs about the server state, and finally their payoffs.

Time is discrete and indexed by τ = 0, 1, . . . . At each date τ , we distinguish three
separate stages: Service, Exit, Arrival. The S,E,A stages collapse separate events in the
queueing process so that they occur at the same calendar time. At any date τ the S,E,A
stages proceed as follows:

Service: This is first stage in each period. Let kτ denote the number of individuals
that are served at date τ . There are two possible states of service: {good, bad}. In the
bad state no individual is ever served: kτ = 0 for τ = 0, 1, 2, . . .. In the good state kτ ,
is an i.i.d. random variable with a geometric distribution2: Pr(kτ = x) = (1 − α)αx for
x = 0, 1, . . . and α ∈ (0, 1).

Exit: In the second stage individuals have the opportunity to leave the queue. (This
is also called “reneging” on the decision to queue.) Any exit is observed by all individuals
who are currently in the queue. This stage is only concluded when no individual remaining
in the queue wishes to exit, so there is the opportunity for multiple rounds of exit at this
stage if this is desired by the agents. The opportunity to exit occurs immediately after
service occurs. She would not find it optimal to leave the queue at any other stage of date
τ , because this is the point at which she has just learnt something about the service rate.

Arrival: At the final stage one new individual arrives. The new individual at date τ
can choose to join the queue or to “balk”, that is, to exit immediately and not join the

2This discrete-time geometric distribution service model for queues is widely used to model computer
communication system: see for example Chaudhry and Gupta (1996).
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queue. Once this stage has occurred the game moves to the next time period and the
S,E,A sequence is repeated.

Notice that in this model individuals must wait in line for at least one period before
they have the opportunity to be served. Also, that the average rate at which individuals
are served in the good state is α/(1 − α). If α > 1/2, the average service rate is greater
than the arrival rate and queues tend to empty whereas if α < 1/2 queues tend to grow.

The individual who arrives at date τ is uncertain about the state of the server and
about the current date. She holds a prior belief on both. Let µ ∈ (0, 1) denote each
individual’s prior belief that the server is in the good state and each individual assigns
prior probability ν(1−ν)τ to having arrived into the system at date τ .3 Once she observes
the number of individuals already queueing for service she will revise these beliefs and can
then (as specified above) choose to join the queue or to balk.

We assume that any individual who is served receives the payoff of w. Any individual
who exits, either initially or after waiting for some time (balks or reneges), receives a payoff
of 1. While individuals wait in line they receive a flow payoff of zero and discount one unit
of calendar time by the factor δ < 1. Finally, we will assume that δw > 1 so it is optimal
to wait for service if the server is known to be good.

3 Optimal Experimentation in Queues

We now describe the solutions to two single-agent optimization problems that are compo-
nents of our game. The first question is: when should an individual join a queue if she
knows the server state is good? This question arises because, even in the good state, it may
take significant time for a long queue to be served. So, a new arrival may prefer balking
and immediately taking the outside option to waiting in line a long time. The answer
to this question will determine the maximum individually rational queue length M. The
second problem is one of optimal experimentation: How long should an individual who
is nth in line wait without observing service before reneging on the queue and taking the
outside option? In this section we treat this question as a private-learning problem and
assume that the individual does not learn from the actions of others in the queue.

3.1 The Maximal Individually Rational Queue Length: M
First we evaluate the value of being nth in line when the server is known to be good.
We will introduce the parameter ψ, which represents the congestion cost of being behind
another individual in a queue. Once we have determined the value of being nth in line,
we can compare this with the value of taking the outside option and determine M , the
maximal individually rational queue length at a server known to be good.

Let Vn denote the expected payoff of an individual who at date τ ’s service opportunity

3Our results will apply to the case where ν is sufficiently small and this prior is sufficiently diffuse. The
parametrization of this prior is not significant it will be simply a way of ensuring that this prior is diffuse
enough.
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has just observed service and is now nth in the queue. This satisfies the recursion

Vn = (1− α)δVn + (1− α)αδVn−1 + · · ·+ (1− α)αn−1δV1 + αnδw.

(At the next service opportunity exactly x = 0, 1, . . . , n − 1 individuals are served with
probability (1−α)αx and the nth in line moves up to the n−xth position. With probability
αn at least n individuals are served, including the nth in line.) As V1 = (1− α)δV1 + δαw,
we can solve iteratively to find

(1) Vn = ψnδw, where ψ :=
α

1− δ(1− α)
.

This expression serves several purposes. First, it will be an input into the calculation
for the optimal time to wait when the server state is unknown. Second, each additional
person queuing in front of her discounts an individual’s payoff by the factor ψ < 1. The
parameter ψ can be understood to capture the congestion cost imposed by any individual
on those behind her in the queue. This congestion cost is mitigated as the service rate, α,
increases and it entirely disappears as α, and so ψ, approach one. In contrast when service
is slow the congestion costs become extreme.

We now describe queues where congestion cost are large enough to make balking prefer-
able to waiting. When the server is known to be good, if ψnδw > 1 an individual prefers
joining the queue at the nth position to balking. We defineM≥ 0 to be the largest integer
such that

(2) ψM+1δw < 1 ≤ ψMδw.

M is the longest the queue can ever get. It depends4 only on the parameters α, δ and w of
our model. Our assumption on w ensures M is positive. Notice that infinitely long lines
are possible as congestion costs vanish, that is, as the individuals become more patient
(δ → 1) or as the service rate increases (α→ 1).

3.2 The nth in Line’s Experimentation

We now turn to an individual’s private learning, or experimentation. This learning is
based only on her observations of the server (in)activity as she waits in line. Hence, in this
section we will assume that she learns nothing from the actions of other agents – there
are no informational externalities. We maintain the assumption that a player must wait
for those in front of her to either be served or to renege on the queue, before she can be
served. This generalizes the usual bandit problem to one where arrival of good news does
not immediately generate a reward; the reward (service) arrives at some random time in
the future.

We want to determine the length of time for which an uninformed agent, who is nth

in line, will optimally wait to learn the queue state. Our first step is to evaluate the
expected payoff of the individual who is nth in line conditional on at least one individual

4For notational convenience we will not make the dependence on these parameters explicit.
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being served. This is essentially the nth in line’s expected payoff conditional on service
occurring at the current service opportunity. A simple calculation (and a substitution from
the recursion above for Vn−1) gives this value:

(3) (1− α)
(
Vn−1 + αVn−2 + · · ·+ αn−2V1

)
+ αn−1w = Vn−1/δ = ψn−1w

Thus the nth in line expects to get a payoff ψn−1w if the server is revealed to be good at the
current service opportunity. For n = 1 the expected payoff from service having occurred is
w, as one would expect, and in general the expected payoff conditional on service having
occurred is proportional to the value (Vn−1) of being n− 1st in a good queue.

Given this preliminary calculation, we can now describe the payoff, Un(m,µ0
n), of an

individual who arrives as the nth in line, has belief µ0
n > 0 that the server is in the good

state5 and adopts the following strategy: Wait m periods for a service event and if one
occurs during these m periods never leave the queue; but if no service is observed, then
renege after m periods of server inactivity. The details of Un(m,µ0

n) can be explained as
follows. First, the individual expects to observe no service over m periods with probability
1−µ0

n +µ0
n(1−α)m. If service occurs in any of the m periods, her expected payoff is given

by (3).

Un(m,µ0
n) := (1− µ0

n + µ0
n(1− α)m)δm + ψn−1w µ0

n

m∑
s=1

δsα(1− α)s−1,(4)

= (1− µ0
n)δm + µ0

nψ
nwδ − µ0

nδ
m(1− α)m(ψnδw − 1).(5)

The three terms on the right of (5) represent: her payoff from taking her outside option
when the state is bad, her payoff from always being served when the state is good, and a
correction to this second term that allows for the possibility that she may be unlucky in
the good state and not observe service in the m periods she waits.

In the absence of social learning, the individual who is nth in line will solve the problem
maxm≥0 Un(m,µ0

n). Her optimal behavior could be described in terms of a cutoff posterior
µ
n

at which she should renege on the queue, or in terms of the number N (n, µ0
n) :=

arg maxm≥0 Un(m,µ0
n) of unsuccessful service events she should observe before reneging.

The result below describes both.

Proposition 1 There exists a solution, m∗, to the problem maxm≥0 Un(m,µ0
n). The opti-

mal action, m∗ is unique for a.e. µ0
n ∈ (0, 1). At beliefs where the solution is not unique,

m∗ and m∗ + 1 are both optimal. The value m∗ satisfies

(6) m∗ = N (µ0
n, n) :=

⌈
(log(1− α))−1 log

(
1− µ0

n

µ0
n

ψ(1− δ)
α(ψnδw − 1)

)⌉
+

,

where dxe+ denotes the smallest non-negative integer greater than or equal to x. At this
solution, the individual chooses to renege when her posterior hits the cutoff:

(7) µ
n

:=
1− δ

δα(ψn−1w − 1)
.

The proof is given in Appendix A.1.

5In Section 5.3 we describe how this belief is obtained.
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4 The Cooperative Problem

We now describe how a team of individuals can act to maximize average social welfare.6

This is the benchmark for the later results when the individuals act strategically. We will
show that, when acting as a team, the individuals can achieve the ex-post first-best average
social welfare. That is, there exists a strategy that allows the team to achieve the first-best
average payoff when the queue is good and the first-best average payoff when the queue
is bad! This strategy will generate a shorter maximum queue than that observed in the
equilibrium of section 5.

If the members of the team can communicate information to later arrivals, the team
problem is trivial, because in the good state service will eventually be observed and all later
arrivals will be told the state. We will, therefore, consider efficiency where the members of
the team cannot share information with each other: each member of the team is constrained
to follow a strategy that depends only on their information. The objective of the team is
to maximise the long-run average utility of all team members. There is no discounting of
team-members’ utilities and we consider a Utilitarian social welfare criterion.

First let’s consider the cooperative optimum when the state of the server is known. In
the bad state the cooperative solution would be for every arrival to balk immediately. This
corresponds to the individually optimal behaviour. In the good state, however, individually
and socially optimal behaviour differ: In the good state, it is individually optimal for
individuals to join queues shorter thanM (whereM is defined by condition (2) above) and
to balk at queues of lengthsM or greater. This is not the cooperative optimum, however.
The individual who is Mth in line is close to indifferent between waiting and immediate
exit; the private benefits and costs of standing in line are close to being equal. However,
waiting in line imposes additional costs on the team, because it delays the expected service
time of all later arrivals (until the line empties). Hence, the privately optimal decision of the
Mth in line has additional social costs that are not incorporated into her private decision.
It follows that the socially optimal line length, M †, in the good state satisfies M † ≤ M
and in general this inequality is strict. Individually optimal queues at good servers are in
general inefficiently long.7

Now let us return to the case where the server state is unknown. The strategy we
propose for each individual is: join the queue and wait until served if there are less than
M † individuals in line; balk and take the outside option immediately if there are M † or
more in the line. This strategy achieves the first-best cooperative payoff in the good state
of the world. In the bad state of the world, the first M † arrivals will join the queue
and, thereafter, no-one will. Averaged over infinitely many individuals, this imposes a
vanishingly small social cost and the average payoff in the bad state of the world is 1. The
policy is, therefore, also ex-post optimal given the team’s Utilitarian objectives.8

6 In a queuing model this problem was studied by Hassin (1985), in the social learning setting Smith
and Sørensen (2009) and in the bandit setting by Bolton and Harris (1999); for example.

7The exact value of M† is calculated in Appendix B.
8 In a more general model where service was provided in the bad state with a reduced probability the

ex-post optimum would not be obtainable. This is because following the optimal good-state strategy in
the bad state would impose increased waiting on an infinite set of agents. We conjecture that the optimal
strategy for the team would be to exit at a threshold that was strictly between the exit threshold in the
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5 Equilibrium of the Queuing Game

We now construct a symmetric equilibrium of this game. The first step in this process is
to propose a of strategy that will be played by each agent. Then, for each server state
we determine the stationary distribution of queue lengths induced by this strategy. These
stationary distributions determine an agent’s posterior upon arriving at the queue at a
given position and observing the current queue length. Finally, we verify that the strategy
assumed at the first step is indeed optimal given this posterior and the other learning
that occurs in this game. Each part of this section deals with one of the four steps just
described.

5.1 Strategies

An individual’s strategy has two parts: It prescribes her behaviour when she arrives at the
queue (whether to join the queue or to balk), and her behaviour once she has joined the
queue (when to stay or and when to renege).

Definition 1 The strategy σ∗(q,N,M):

• An individual joins any queue as long as she is at most M th in line.

• If there are agents ahead of her in the queue when she joins it, then she reneges on
the queue if and only if the first in line reneges.

• If there are no agents ahead of her in the queue when she joins it, then she reneges
after N unsuccessful service opportunities with probability q ∈ [0, 1]. With probability
1 − q she experiments for one more period and reneges if not served at the N + 1st

service opportunity.

The probability q ∈ [0, 1] and the non-negative integers N and M are parameters of σ∗.
According to this strategy,9 no individual other than the first in line autonomously

reneges on the queue. For N < M this means that agents will continue to join the queue
as long as the first in line experiments. If an individual joins a queue no longer than N , she
does not know whether the individual currently first in line initially joined the queue at a
later position and moved up to first position when service occurred, or whether she joined
the queue at the first position and has been waiting for service ever since. In other words,
the agent joining a queue may not know whether the first in line has already observed
service or is still experimenting.

If N < M the length of the queue can also reveal the first in line’s information. If
the first in line reneges after N periods of experimentation, all those behind her infer
that she has not yet observed service. If the first in line does not renege after N periods
of experimentation, all those behind her learn with certainty that the first in line has
previously observed service. They are now certain that the server is in the good state and

good state and the bad state.
9In a slight abuse of notation, we will use σ∗ interchangeably to denote an individual’s strategy or the

symmetric strategy profile in which every individual uses the strategy σ∗.
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will stay in the queue until served. Therefore, an individual arriving at a queue in nth

position, where N < n ≤ M + 1, can be certain that the server is in the good state. We
say that the strategy profile σ∗ exhibits perfect revelation when N < M .10

If on the other hand M ≤ N , the queue will not exceed length M even as the first
in line continues to experiment. All agents queuing behind the first in line learn that the
server is in the good state if the first in line doesn’t renege after N unsuccessful service
events, but even in that case the queue never grows longer than M . So while the position
n at which an agent arrives at the queue remains informative about the server state, there
exists no n that perfectly reveals the server state. We say that the strategy profile σ∗

exhibits imperfect revelation when M ≤ N .11

We will establish that a strategy profile σ∗ with perfect revelation (N < M) constitutes
a perfect Bayesian equilibrium of the game, provided agents are sufficiently patient and
have a sufficiently diffuse prior on the calendar date at which they enter the system. This
is summarised in the proposition below. The result holds for all α ∈ (0, 1). When δ
is sufficiently large, it optimal for the first in line to engage in some experimentation.
Moreover the cost of congestion is sufficiently small for agents to be willing to join long
queues. Both of these elements ensure that there exists a PBE with perfect revelation.

Proposition 2 Given µ ∈ (0, 1) and α ∈ (0, 1) there exists δ < 1 such that for all
δ > δ and all ν < ν̄(δ) there exists a strategy σ∗(q∗, N∗,M∗) with perfect revelation that
constitutes a symmetric perfect Bayesian equilibrium of this game.

This proposition is proved by Lemmas 5 and 7 below. Equilibria with imperfect revelation
exist for lower values of δ. While we don’t prove this result formally, we give an intuition
for it in Section 5.5 where we give examples of such equilibria.

5.2 Stationary Distributions of Queue Lengths

The inference an individual draws from the queue length she observes upon arrival is de-
scribed in Section 5.3. It depends on the distributions of possible queue lengths conditional
on the server state and given that all individuals use the strategy σ∗ described above. We
describe the stationary distributions of queue lengths in this section.

We will consider the stochastic process followed by the queue length at the start of the
arrival stage of each date τ ∈ Z+. This choice of timing is critical in understanding the
distributions below. We say that the queue has length n at date τ if the individual arriving
in the system at date τ arrives in the queue at the nth position—even if that individual
then balks. There are two discrete-time Markov processes to consider: one that arises if
the server is in the good state and the other if the server is in the bad state. We now
derive the stationary distributions of these processes.

Conditional on the server being in the bad state, the queue length (at the start of the
arrival stage) follows an almost deterministic process. Let wn (n = 1, 2, . . . ,M + 1) denote
the stationary probability of arriving at the queue at the nth position, conditional on the

10For q < 1 perfect revelation requires N + 1 < M .
11For q < 1 the strategy profile with M = N + 1 also exhibits imperfect revelation.
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server being in the bad state. If N < M the queue grows by one individual each period
and then shrinks to length 1 in the period after reaching length N with probability q, or
with probability 1−q grows to length N+1 and then shrinks to length 1. Thus, in the bad
state there is ergodic probability 1/(N + 1− q) of arriving nth in line for n = 1, 2, . . . , N ,
probability (1−q)/(N+1−q) for n = N+1, and zero probability of arriving at the queue at
any other position. If M ≤ N the queue will grow to size M and then stay at that size for
a further N−M periods with probability q or a further N+1−M periods with probability
1− q before shrinking to unity. Thus there is ergodic probability 1/(N + 1− q) of arriving
at a queue nth in line for n ≤M and ergodic probability (N −M + 1− q)/(N + 1− q) of
arriving at the M+1st position (and balking). These values are summarized in Proposition
3 below.

Conditional on the server being in the good state, the process governing the evolution
of the queue (at the start of the arrival stage) is more complex. If the agents use the
strategy σ∗(q,N,M), the queue length at the end of each period follows a stochastic
process: sometimes service occurs and shrinks the queue and other times it does not;
sometimes the first in line reneges and all the others in line follow her. This stochastic
process is a Markov chain, provided the state of the process is defined to be the position
in the queue at which the latest individual arrives and whether or not the first in line
knows that the server is in the good state. There are at most M + N + 2 states for this
process: arrival at positions 1, 2, 3, . . . ,M + 1 and the first in line knows the server is in
the good state; arrival at positions 1, 2, . . . , N + 1 and the first in line is uncertain. The
process governing the queue length, defined by the strategy above and the service process,
has finite states and is irreducible so it must admit a unique stationary measure.

We define yn (n = 1, 2, . . . ,M + 1) to be the stationary probability of arriving nth in
line at the arrival stage of date τ ∈ Z+, conditional on the server being in the good state.
We also define zn (n = 1, 2, . . . , N+1) to be the stationary probability that the first in line
has not observed a service event and that the individual arriving at date τ ∈ Z+ arrives
at the nth position, conditional on the server being in the good state.12 These values are
characterised in the following proposition.

Proposition 3 Assume that α 6= 1/2 and α 6= α∗N where α∗N solves (1−α)N+1 = 1−2α. If
the agents follow the strategy σ∗(q,N,M), then conditional on the server being in the good
state the unique stationary distribution satisfies zn = (1− α)n−1y1 for n = 1, 2, . . . , N + 1.
If N < M , then

yn = B


φn−1 − kN , n = 1, 2, . . . , N ;

φn−1 − kN q+(1−q)αφ2
αφ2+q(1−α)

, n = N + 1;

φn−1 − kN 1+qφ
φ2(φ+q)

φn−N , n = N + 2, . . . ,M + 1;

(8)

B−1 =
1− φN

1− φ
−NkN +

φN − φM+1

1− φ

(
1− kN

φN+1

1 + qφ

φ+ q

)
+ (1− q)kN

1− φ2

φ(φ+ q)
.(9)

12The remaining part of the stationary distribution can be found by taking the difference yn−zn. Notice
that an individual cannot have just arrived at the first position in the queue and know that the server is
good. This is why the state where an individual arrives at the queue in first position and knows that the
server is in the good state has zero measure, and y1 = z1.
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If M ≤ N , then

yn = B

{
φn−1 − kN , n = 1, 2, . . . ,M ;
φM − kN

φ
, n = M + 1;

(10)

B−1 =
1− φM+1

1− φ
− kN(M + φ−1).(11)

In both cases: φ := (1− α)/α; kN := α(φ + q)(1− α)N+1/[α(φ + q)(1− α)N+1 + 2α − 1].
Finally, conditional on the server being in the bad state, the unique stationary distribution
satisfies, for N < M :

wn =


1

N+1−q , n = 1, 2, . . . , N ;
1−q

N+1−q , n = N + 1;

0, n = N + 2, . . . ,M + 1;

(12)

and for M ≤ N :

wn =

{
1

N+1−q , n = 1, 2, . . . ,M ;
N−M+1−q
N+1−q , n = M + 1.

(13)

The proof of this result is given in Appendix A.2. In the statement of Proposition 3 there
are two excluded values of α In both cases the stationary distribution exists, but it has
a different functional form from the ones given above. We will describe these distribu-
tions later in this section. For most values of α, this stationary distribution admits three
qualitatively different forms:13

Decreasing when α > 1/2: In this case service is faster than arrivals, so shorter queues
are more likely than longer ones. The effect of fast service is further exacerbated
by the “renewal” effect of the uninformed first in line reneging after N unsuccessful
service events, causing the entire queue to clear. The stationary distribution therefore
exhibits faster than exponential decline when M ≤ N , and for the values n =
1, . . . , N when N < M . The jump down between n = N and n = N + 1 occurs
because such a transition is only possible if the first in line knows that the server is
in the good state. Similarly for the jump between N + 1 and N + 2 when q < 1. For
n = N + 2, . . . ,M , the distribution declines exponentially.
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13All numerical illustrations of the stationary measure in this section are for the value q = 1/2. The
values of N and M are chosen for clarity of illustration and are not necessarily equilibrium values.
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Figure 1: The stationary measure of the queue length conditional on the server being
in the good state with α > 1/2 under perfect revelation (left panel) and imperfect
revelation (right panel).

U-Shaped when α < 1/2 and kN > 1: This occurs for N < M when α tales values
in the interval (α∗N , 1/2). That interval vanishes (α∗N → 1/2) as N → ∞. For these
values of α, service is slower than arrivals so that, unconditionally, longer queues
are more likely than shorter ones. However the effect of slow service is dominated
by the renewal effect when M ≤ N and for the values n = 1, . . . , N when N < M .
Therefore, conditional on the first in line being uninformed, shorter queues are more
likely than longer ones and the stationary distribution is declining with n. In contrast,
once the queue grows longer than N it tends to fill up to length M and stay there
for some time. So the stationary distribution jumps down at N + 1 and N + 2 and
then increases over the range N + 2 ≤ n ≤M , as illustrated in Figure 3 below.
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Figure 2: The stationary measure of the queue length conditional on the server
being in the good state with α∗N < α < 1/2 under perfect revelation (left panel) and
imperfect revelation (right panel).

Increasing when kN < 0: This occurs for α ∈ (0, α∗N). In this case service is so slow
that it dominates the renewal effect. The stationary measure is therefore increasing
over its entire support. Notice that as M increases without bounds, y1 tends to zero.
Intuitively: If the queue at a good server is most likely to be infinitely long, arriving
at the first position in line makes a individual almost certain that the server is in the
bad state.
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Figure 3: The stationary measure of the queue length conditional on the server being
in the good state with α < α∗N under perfect revelation (left panel) and imperfect
revelation (right panel).
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Excluded values α = 1/2 and α = α∗N : For α = 1/2, the exact analytical form of the
stationary distribution is derived in Appendix A.2. For N < M it is linearly decreas-
ing in n for 1 ≤ n ≤ N , has a downward step at n = N + 1 and n = N + 2, and is
constant for n ≥ N + 2. For M ≤ N it is linearly decreasing in n for 1 ≤ n ≤ M
and has a downward step at n = M + 1.

For α = α∗N and N < M the stationary measure is uniform for n ≤ N , has a
downward step at n = N + 1 and n = N + 2, and is increasing for n ≥ N + 2. For
M ≤ N it is uniform for 1 ≤ n ≤M and has a downward step at n = M + 1. These
cases are illustrated below.
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Figure 4: The stationary measure of the queue length conditional on the server
being in the good state when α takes the values α∗N and 1/2 under perfect revelation
(first two panels) and imperfect revelation (last two panels).

We now establish a bound on the rate at which the Markov process followed by the
queues in the good state converges to the stationary distributions defined in Proposition
3. This result will be of use in the next section when we argue that posteriors based on
these stationary distributions are a good approximation to the agents’ true posteriors when
they arrive at a queue of a given length. There are at most M + N + 2 states for this
Markov process that is: arrival at positions 1, 2, 3, . . . ,M + 1 and the first in line knows
that the server is in the good state; arrival at positions 1, 2, . . . , N + 1 and the first in
line is uncertain about the server state. Let S := {1, 2, . . . ,M + 1} ∪ {1, . . . , N} denote
this state space and ζ ∈ ∆(S) a generic probability measure on S. The initial condition
(at the arrival state of date τ = 0) is that one (uniformed) individual arrives at the first
position in line. We will denote its measure as ζ0 ∈ ∆(S). The strategy σ∗(q,N,M)
together with the service process determine a probability distribution for queue lengths at
all future dates τ = 1, 2, 3, . . . , which we will denote ζτ ∈ ∆(S). Finally we let ζ̄ ∈ ∆(S)
denote the stationary measure described in Proposition 3. In the lemma below we give a
rate of convergence result for this process. That is, we bound the distance between ζτ and
ζ̄, where ‖ · ‖ denotes the total variation norm.
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Lemma 1 If the server is in the good state, then ‖ζτ − ζ̄‖ < (1− αM)τ for all τ > 0.

The proof of this lemma can be found in the Appendix A.4. It is intuitive once one
appreciates that at each date there is a probability of at least αM that all the individuals
in the queue are served (no matter how long the queue is). Once all individuals are served,
the queue reverts to the state in which an individual arrives at the queue at the first
position and is hence uninformed about the server state. This renewal (or coupling) rate
bounds the rate of convergence to the stationary measure.

5.3 Posteriors and Inference on Queue Lengths

In this section we describe the properties of the agents’ posterior beliefs when the strategy
σ∗(q,N,M) is used. There are two sources of information and, therefore, two kinds of
learning in this model. We refer to the inference an agent draws from her own observation
of server activity as private learning, or experimentation, and distinguish it from social
learning, where an agent draws inference from the actions of other agents. At our equilib-
rium social learning occurs when agents arrive in the system and observe the queue and
when they observe the first in line’s behaviour after N or N+1 unsuccessful service events.

We begin this section by giving two expressions, (14) and (15), for the updated beliefs
the individual would have if she were certain that the process governing the queue length is
in the stationary regime. (The social learning that an individual performs upon arriving at
the queue at the nth position, without incorporating any prior information the individual
may have about the calendar date.) Our first result in this section, Lemma 2, shows that
these expressions are arbitrarily good approximations to the individual’s true posterior
(incorporating her belief about the date) provided the parameter ν is sufficiently close to
zero.

The second result describes the relationship between private and social learning. In
Lemma 3 we show that an agent later in the queue is always more optimistic than those
ahead of her (conditional on no agent having actually observed service). In our final result
of this section, Lemma 4, we will describe how agents’ social learning varies with the
parameters N of the strategy σ∗(q,N,M) and α of the arrival process.

Consider an individual arriving at the nth position in the queue. Her observation of the
queue length provides information about the state of the server. We use µ0

n to denote her
updated prior, that is, the individual’s posterior belief that the server is in the good state
conditional on arriving at the queue at the nth position. We use µ̄0

n to denote the analogous
belief based on the stationary measures of queue lengths described in Proposition 3, that
is ignoring the individual’s prior on the calendar date. If the individual were certain that
the queue had been operating long enough to be in the stationary regime she would form
the posterior belief:

(14) µ̄0
n :=

µyn
µyn + (1− µ)wn

.

For n ≤ min(N,M), µ̄0
n depends on n only though yn. Because µ̄0

n is an increasing function
of yn, the results on the form of the stationary measure in the previous section imply

15



that µ̄0
n is decreasing, constant, increasing in n for the same values of α as yn is when

n ≤ min(N,M), i.e. for α > α∗N , α = α∗N and α < α∗N respectively.
We now turn to the individual’s private learning, or experimentation. As an individual

waits in line, she observes whether those in front of her are served or not. As soon as
service occurs, all agents currently in the queue learn that the server is in the good state
and their posteriors jump to unity. We let µtn denote the posterior of the individual at
the nth position (n ≤ N) who has observed t = 0, 1, 2, . . . unsuccessful service events. As
before we will use µ̄tn to denote the stationary analogue. From Bayes’ rule this is:

(15) µ̄tn :=
µ̄0
n(1− α)t

µ̄0
n(1− α)t + 1− µ̄0

n

.

In Lemma 2 we show that the true posterior beliefs µtn, for t = 0, 1, 2, . . ., can be made
arbitrarily close to these posteriors if ν is chosen to be sufficiently small. The proof of this
Lemma is given in Appendix A.5. The intuition for the proof is that the true posterior
beliefs are an average of beliefs the agent would have formed if she knew she had arrived at
a given calendar date. As ν → 0 this average gets closer to the time (or ergodic) average
which uses the stationary measure. This is aided by the simple form that learning takes in
this model: either posteriors jump to unity or they are revised downwards. Importantly
this result is independent of q.

Lemma 2 For any M, ε > 0 there exists a ν̄ > 0, such that for all ν < ν̄, N < M ,
q ∈ [0, 1], t ≥ 0:

|µ̄tn − µtn| < ε.

We now compare agents’ posterior beliefs along any given queue. Those ahead of the
individual nth in line may (for α > α∗N) have been more optimistic than her when they
joined the queue because they arrived at a shorter queue. However, they have been waiting
in the queue for longer, and unless they have observed a service event, the waiting will have
depressed their belief about the server state. We show that in any given queue in which
no one has observed a service event, the most optimistic agent is the last in line. Lemma
3 establishes that an agent who is at the nth position and has been waiting t periods is
less optimistic that the agent at the n+ 1th position who has been waiting t− 1 periods, if
neither agent has observed service. The intuition for this result follows from the nesting of
agents’ information partitions. The individual behind n in the queue has observed strictly
less than n has, so their beliefs about the state of service are an expectation of n’s beliefs.
This expectation places positive weight on n knowing that the server is in the good state.
That is, µtn+1 is an average of 1 and one point µt+1

n < 1. Such an average must be above
µt+1
n . In fact, if one took a snapshot of the posteriors held by the agents in a queue at any

calendar date τ the sequence of posteriors would be the realization of a martingale. To be
precise about our result, proved in Appendix A.6, we introduce a new piece of notation:
let µtτn be the posterior of an agent who is at the nth position in the queue at calendar date
τ and who has been queueing for t periods.

Lemma 3 If µtτn < 1 then µt−1τ
n+1 > µtτn for all τ , n and t > 0.
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Our final lemma in this section describes some properties of the first in line’s steady-
state posterior, µ̄t1, as the parameters N and α of the strategy vary. (Below we will use
the notation µ̄t1(N) to make explicit the dependence of the beliefs on the parameter N .)

In Lemma 4(a), we describe some properties of the informational externality for the
agent arriving at the queue in first position. For given values of M and N , there is a critical
value ᾱ such that if α > ᾱ finding herself first in line causes an agent to revise upwards her
belief about the server state: µ0

1(N) > µ, i.e. it is good news to be first in line. Whereas,
for α < ᾱ being first in line is bad news and µ0

1(N) < µ. The intuition for this result is
that when α is large the stationary distribution in good states has a peak at n = 1, so
on observing a short line the most likely explanation is that the state is good. Conversely
when α is small, the stationary distribution in good states has peaks at n = M + 1 and
on observing a short line the most likely explanation is that the server is in the bad state.
Although the value of this threshold varies with N and M , we construct bounds on the
threshold that are independent of these parameters.

In Lemma 4(b) we show that, as the strategy prescribes that the first in line exper-
iment for longer (i.e. N increases) the probability of arriving at the queue at the first
position when the server is good declines. An intuition is that as N increases there is total
probability being spread over more states, so the probability of any one state falls.

Finally in Lemma 4(c), we show that although a higher N does affect the first in
line’s social learning, it still results in a reduction in the first in line’s posterior after N
unsuccessful service opportunities. As N increases there are many things to take account
of: The probability being first in line at a bad server shrinks to zero, but the probability of
being first in line does not necessarily vanish if the server is in the good state. Thus as N
increases, arriving first in line may become very good news indeed. On waiting N periods
without success, however, the posterior of the first in line is revised so far down that her
initial optimism is entirely depleted. The effect of private learning eventually dominates
the effect of social learning. All these results are proved in Appendix A.7.

Lemma 4 Suppose that N > 1 and q = 1, then:
(a) There exists a threshold value ᾱ ∈ (0, 1) such that such that for each N

µ̄0
1(N) > µ ⇐⇒ α > ᾱ.

Where (3−
√

5)/2 ≤ ᾱ ≤ 2/3 for all M,N > 1.
(b) y1 decreases as N increases for all α ∈ (0, 1).
(c) µ̄N1 (N) decreases in N for all N > 1/α and tends to zero as N tends to infinity.

5.4 Equilibrium with Perfect Revelation

In this section we establish that for δ sufficiently large, the strategy σ∗(q∗, N∗,M∗) con-
stitutes a symmetric equilibrium for some N∗ < M∗. That is, we complete the proof
of Proposition 2. There are three conditions that need to be satisfied by an equilibrium
strategy profile σ∗(q∗, N∗,M∗).

First, because for N < M the queue length reveals that the server is in the good state
to the player arriving in M th position, the equilibrium value M∗ must equalM, the longest
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individually rational queue length defined in (2):

M∗ =M =

⌊
ln(δw)

ln(2− δ)

⌋
.

Second (Lemma 5), the equilibrium values of N and q determine the first in line’s
posterior µ0

1 upon arriving at the queue at the first position and are an optimal policy for
the first in line given that belief. This condition is summarized by the equation

N∗ = N (µ0
1(N∗), 1).

Third (Lemma 7), given the stationary measures of queue lengths generated by the
strategy σ∗(q∗, N∗,M∗), an individual arriving at the nth position in the queue is prepared
to herd on the first in line’s actions. Reneging on the queue when the first in line reneges
is clearly optimal. As once the first in line reneges, any player behind her becomes as
pessimistic as her (adopts the posterior belief µN1 ) and faces at least as much congestion
as the first in line did. Therefore, it is sufficient to ensure that no individual in the queue
wants to renege before the first in line’s N∗ periods of experimentation are completed.

The following lemma, proved in Appendix A.8, establishes the existence of an equi-
librium number of periods N∗ for the first in line to experiment. The intuition for this
result comes from Lemma 4(c). There we show that as the first in line experiments for
more periods, her posterior after unsuccessful experimentation must eventually converge
to zero. This occurs even allowing for the effect which her increased experimentation has
on the stationary distributions and on her resultant belief upon arriving at the queue. The
continuity of the first in line’s posterior µN1 in the strategy σ∗(q,N,M) (again allowing
for the effects on the stationary distributions), then ensures that there exists a posterior
which hits the optimal exit threshold for the first in line.

Lemma 5 There exists (q∗, N∗), such that it is optimal for the first in line to wait N∗

periods (if q∗ = 1) or N∗, N∗ + 1 periods (if q∗ < 1) for service when all other agents use
the strategy σ∗(q∗, N∗,M) for any M > N∗.

There are several points worth making about Lemma 5. The first is that the pair
(q∗, N∗) is not necessarily unique for any given M . The possibility of multiple equilibria
arises because increased experimentation by the first in line (changing the stationary mea-
sures in the two server states) results in an increased prior on the good state for the first
in line. The increased prior then makes this increased experimentation optimal. Of course
this process cannot continue indefinitely, by Lemma 4(c), so the set of possible equilibrium
values of (N∗, q∗) is finite, but there is no clear monotonicity that ensures uniqueness.

Second, we can compare the equilibrium experimentation, (q∗, N∗), with the single-
agent optimum experimentation at the original prior µ. We know, from Lemma 4(a), that
for all N > 1 and α > ᾱ the first in line’s posterior at the equilibrium is above the prior µ.
Thus optimality requires that she experiments more in this equilibrium of the game than
in the corresponding single-agent decision problem. Similarly, for values of α below ᾱ, the
first in line’s posterior is less than her prior, so she must experiment less in the game than
in the decision problem.
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Corollary 1 If m∗ is given by N (µ, 1), then: For all α > 2/3 the equilibrium strategy
σ∗(q∗, N∗,M) with N∗ = N (µ1

0, 1) satisfies N∗ ≥ m∗ and for all α < (3 −
√

5)/2 the
equilibrium strategy satisfies N∗ ≤ m∗.

Before proceeding we give an intermediate result on the limiting behaviour of N∗ and
M∗ as δ → 1 for different values of α. Unambiguously, M∗ tends to +∞ for all α ∈ (0, 1).
For α > 1/2, as δ → 1, the willingness of the first in line to experiment also grows without
bounds, even for high values of α (at which a good server should produce service quickly
and the agents’ posteriors quickly fall quite low if no service is observed), or for lower
values of α (1/2 < α < ᾱ) for which arriving first in line depresses an agent’s belief relative
to her prior.

For α < 1/2, this last, “bad news” effect dominates, and limM→+∞ y1 = 0 for N > 1 so
that arriving at the first position in line makes an individual almost certain that the server
is bad, and we have N∗ = 1.14 For α = 1/2, the effects balance out and N∗ tends to some
finite constant c that increases with the prior µ. We state our next Lemma with reference
to an auxiliary problem described, together with the proof of the Lemma, in Appendix
A.9.

Lemma 6 For all µ ∈ (0, 1), for all α ∈ (0, 1), as δ → 1, N∗ converges to
(a) 1 when α < 1/2,
(b) +∞ when α > 1/2.
(c) 1 < c <∞ when α = 1/2,

The final step is to address our third equilibrium condition and show that no individual
in the queue wishes to renege before the first in line’s experimentation has elapsed. The
next lemma provides a sufficient condition on the parameters of the model for this to be the
case. The intuition for this result follows from the following simple argument. Observing
the first in line’s decision on whether or not to renege after N (N + 1 with probability
1− q) periods of experimentation reveals all the first in line’s information to those behind
her in the queue. So waiting for the result of the first in line’s experimentation generates
an informational benefit for later arrivals. The expected cost of acquiring this information
is less for them than for the first in line, because even if they learn that the server is
good later arrivals do not need to queue for as long as her in the bad server state. Their
expected benefit is also lower, because later arrivals have to bear the cost of congestion
parametrised by ψ. However, as the congestion becomes small (δ → 1) the discrepancy in
benefits vanishes and therefore it ultimately becomes optimal to pay the reduced cost of
observing the first in line.

Lemma 7 Given µ ∈ (0, 1) and α ∈ (0, 1), there exists a δ such that for all δ > δ and all
0 < ν < ν̄(δ), when all other agents use the strategy σ∗(q∗N∗,M∗) given by Lemma 5 it is
optimal for the nth in line, n = 2, . . . ,M∗ + 1, to play this strategy.

14In that case we also have q∗ < 1. See the discussion in the Appendix A.9.
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5.5 Other Equilibria

For the existence of an equilibrium with perfect revelation we required that δ be sufficiently
large. Intuitively, agents must be sufficiently patient, or equivalently the congestion exter-
nality ψ they perceive must be sufficiently low, for them to accept taking up late positions
in the queue. As δ decreases, individuals are more reluctant to take up late positions in
the queue, and we can envisage an equilibrium in which no individual is willing to join the
queue at position n or greater, but in which the first in line finds it optimal to experiment
for N > n periods. In this section we illustrate the existence of equilibria with imperfect
revelation for intermediate15 values of δ.

At a strategy profile σ∗(q,N,M) with M ≤ N , the player joining the queue at the M th

position cannot learn, merely by observing the queue length, that the server is in the good
state. Therefore, the condition M∗ =M does not determine the equilibrium value of M ,
as it did in the equilibrium with perfect revelation. Instead, M∗ is determined as follows:
the individual arriving at the queue at the M∗ + 1st position must prefer balking, while
the individual arriving at the M*th position must prefer joining the queue and waiting
N∗+ 1−M∗ periods (with probability q, and N∗+ 2−M∗ periods with probability 1− q)
to obtain the first-in-line’s information.

For n = 1, . . . ,M , the payoff from joining the line at nth position and abiding by
strategy σ∗(q,N,M) is:

(16)

U∗(n) := q
[(

1− µ̄0
n + µ̄0

n(1− α)X zn
yn

)
δX + µ̄0

n

(
1− (1− α)XδX zn

yn

)
ψnδw

]
+(1− q)

[(
1− µ̄0

n + µ̄0
n(1− α)X+1 zn

yn

)
δX+1 + µ̄0

n

(
1− (1− α)X+1δX+1 zn

yn

)
ψnδw

]
,

where X := N + 1−n is the number of periods the nth in line must wait before the first in
line’s N periods of experimentation are over, and where zn

yn
= (1−α)n−1 y1

yn
is the likelihood

which the player who arrives at the queue at the nth position attributes to the first in line
being uninformed for n = 1, . . . ,M .

Within each set of square brackets, the first term is the payoff to the nth in line if she
eventually reneges on the queue, and the second term is her payoff if she is eventually
served. The first term in round brackets it the probability that the player eventually
reneges under strategy σ∗. For the first in line (n = 1) this equals the probability that the
server is bad, or that it is good but produces N failures. For the nth in line, N = 2, . . . ,M ,
this equals the probability that the server is bad; or that the server is good yet produces
N + 1− n failures and the first in line is uninformed (the individual arriving at the queue
at the nth position attributes probability zn/yn to that last even).

The individual arriving at the queue at the M + 1st position could be the nth arrival
equiprobably for all n ∈ {M + 1, . . . , N}. Therefore, her expected payoff from joining the

15 Notice that for δ < (1 + α(w− 1))−1, the value V1 of being first in line at a server known to be good
is less than 1, the value of the outside option. It is therefore optional for any individual arriving at the
queue to balk immediately and take the outside option.
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queue at the M + 1st position is

U∗M+1(N,M) :=
q

N −M

N∑
n=M+1

U∗M+1(n,X) +
1− q

N + 1−M

N+1∑
n=M+1

U∗M+1(n,X + 1),

where

U∗M+1(n,X) :=

(
1− µ̄0

M+1 + µ̄0
M+1(1− α)X

zn
yM+1

)
δX+µ̄0

M+1

(
1− (1− α)XδX

zn
yM+1

)
ψM+1δw,

and where X := N + 1− n and zn = (1− α)n−1y1 for n = M + 1, . . . , N,N + 1.
Under imperfect revelation, the equilibrium values q∗, N∗ and M∗ therefore satisfy the

following conditions: (1) N∗ = N (µ̄0
1(N∗,M∗), 1), where µ̄0

1(N∗,M∗) depends on N∗ and
M∗ via y1; (2) U∗(M∗) ≥ 1 and U∗M∗+1 < 1; (3) for n = 2, . . . ,M∗, the player arriving nth

in line does not want to renege before the first in line’s experimentation is completed.
Below we illustrate the equilibria of the queuing game as a function of δ for different

values of α. Notice that there can be multiple equilibria for some pairs of parameters α, δ.
For δ sufficiently high, an equilibrium with perfect revelation always exists. It ceases to
exist as delta decreases, and instead an equilibrium with imperfect revelation exists. The
transition is not sharp, and there can be parameter values at which both types of equilibria
exists.
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Equilibria in the queueing game for µ = 0.99 and α = (0.7, 0.5, 0.3).

Finally, observe that the strategy σ∗ we have studied here belongs to a broader class of
strategies which focus on particular individuals at particular positions in the queue whose
actions are informative. We will call these individuals “herding leaders”. The strategy of
a herding leader is to pick a duration for which to experiment and to renege if no service
is observed before that time has elapsed, or if someone ahead of her reneges. The strategy
of herding followers is to focus on the closest herding leader ahead of them in the queue
and to renege only when she does. So once in the queue, only a herding leader’s strategy
depends on her private learning, whereas a herding followers’ strategies depend only on the
publicly observed herding leaders’ actions. We could envisage the existence of equilibria
with more than one herding leader, but we do not analyse it in this paper.

6 Social Memory

Let us define social memory to be the average time it takes to go from a state in which
an individual arrives at the queue in first position to the next such state. An individual
arriving first in line has no way of learning from the past experience of those who have been
in the queue before her: the social memory is reset. By the standard results for positive
recurrent Markov processes, the mean return time to the sate in which an individual arrives
at the queue in first position conditional on the server being good is given by 1/y1, the
inverse of the stationary probability of that state (see for example, Brémaud (1999) p.
104). As this is something we have calculated (see A.21) we have the following result.

Corollary 2 If the server is in the good state, the social memory is

1− φM+1

1− φ
−
(

φ

1 + φ

)N {
1 + φ

N∑
i=0

1− φM−i

1− φ

}
.

It is simple to see that as α approaches unity (φ goes to zero) the social memory
vanishes, so the episodes in between social memory resets become very short. We can also
show that these become arbitrarily large as α becomes small (φ→∞).16 When this is the

16The greatest power of φ dominates the polynomial, this is φM+1(1−φN (φ+1)−N )/(φ−1). L’Hôpital’s
rule shows that this tends to infinity.

22



case it must be that most of the time everyone in the queue knows that the server is in
the good state

7 Conclusions and Further Work

The ingredients in our queueing model—individual learning, observational learning and
payoff externalities—arise in many economic and social contexts. Consider, for example,
firms that are engaged in R&D projects in closely related areas. If one firm has a success,
this is good news for other firms, since it indicates that the entire area of research is
worthwhile. However, the greater the number of firms that are competing in the area, the
less lucrative the value of any patent that the firm secures. Similar concerns arise in other
contexts, such as firms drilling for oil in the same geographical area, or lenders to venture
capitalists in a nascent industry.

Even though the nature of congestion in some of these contexts may be somewhat
differently structured, similar issues as in our model arise, and we hope that the results
derived here will be useful in analyzing these related problems. The crucial benefit of
the queuing structure is that the individuals’ information is nested: any individual has
collected strictly less information than those ahead of her in the queue.

The fundamental insight our queuing model offers to the more general question of
experimentation with informational and payoff externalities is that strategy profiles in
which individuals concentrate the social learning on certain focal individuals might result
in such nesting of information and are more likely to constitute equilibria in more general
settings.
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A Appendix

A.1 Proof of Proposition 1

Proof: Taking a difference and substituting for ψ gives:

(A.1) Un(m+ 1, µ0
n)− Un(m,µ0

n) =
µ0
nα

ψ
δm(1− α)m

{
ψnδw − 1− (1− µ0

n)ψ(1− δ)
µ0
nα(1− α)m

}
.

The term in braces is strictly decreasing in m and tends to negative infinity as m → ∞.
The function Un(., µ0

n) is, therefore, strictly quasi-concave in m and has a maximal value
on m ≥ 0. Thus, there is a solution to the problem maxm≥0 Un(m,µ0

n). The maximizing m
is described by the smallest m for which Un(m + 1, µ0

n)− Un(m,µ0
n) is non-positive. This

solution is generically unique by the strict monotonicity of the braces in (A.1). Setting the
braces in (A.1) to equal zero allows us to determine (6).

After observing m periods of unsuccessful experimentation the individual forms the
posterior belief

µmn =
µ0
n(1− α)m

1− µ0
n + µ0

n(1− α)m
, so that

µmn
1− µmn

= (1− α)m
µ0
n

1− µ0
n

.

Using this expression and setting the braces in (A.1) equal to zero gives us the expression
in (7) for µ

n
, the nth in line cutoff posterior. It is optimal for the nth in line to experiment

as long as µmn ≥ µ
n

and to renege otherwise. �

A.2 Proof of Proposition 3

Proof: I) Good server under perfect revelation (N ≤ M): We will begin by
considering the recursions which the stationary distribution of the queue lengths must
satisfy when N ≤M .

Consider first the state in which the queue length is n = 1. It is possible to enter
this state if there were previously r individuals in line and more than r service events
occurred (probability αr). It is also possible to enter state n = 1 if there were N or N + 1
individuals in line in the previous period and the first in line had never observed service,
was not served and reneged, causing the entire queue to renege. Thus we can write

y1 = zN(1− α)(1− α(1− q)) +
M∑
r=1

αryr + αMyM+1,

where zN is the stationary probability of a queue length N with an uninformed first in
line. The last term arises because there are M agents in line both in state yM and in state
yM+1.

For n > 1, n 6= N + 1 and n < M the queue can enter state n if no service occurred
last period (probability 1−α) and there were n− 1 individuals in the line, or if r− (n− 1)
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individuals are served (probability (1 − α)αr−n+1) and the queue was previously in state
r. Thus

yn = (1− α)
M∑

r=n−1

αr−n+1yr + (1− α)αM−n+1yM+1.

The system transits to the state where the queue length is N + 1 if the queue is length
N there is no service and either: (a) the first in line knows that the server is in the good
state or (b) the first in line is uninformed but his randomising determines that she wait
one more period (probability 1− q). A second route to entering state N + 1 is if the queue
was previously in state r > N and exactly r −N individuals were served. Hence

yN+1 = (1− α)(yN − zN) + (1− α)(1− q)zN + (1− α)
M∑

r=N+1

αr−Nyr + (1− α)αM−NyM+1.

A little re-arranging gives

yN+1 + q(1− α)zN = (1− α)
M∑
r=N

αr−Nyr + (1− α)αM−NyM+1.

A similar calculation for queues of length N + 2 gives

yN+2 = (1−α)(yN+1− zN(1−α)(1− q)) + (1−α)
M∑

r=N+2

αr−N−1yr + (1−α)αM−N+1yM+1.

or

yN+2 + (1− q)(1− α)2zN = (1− α)
M∑

r=N+1

αr−N−1yr + (1− α)αM−N+1yM+1.

The probability that the queue is of length M equals yM + yM+1, the probability that
the latest agent arrives at the M th position and joins the queue, or at the M + 1st position
and balks. An agent arrives at the M th position if the queue was of length M−1 at the end
of the last period and no service occurred, or it was of length M and exactly one service
event occurred:

yM = (1− α)yM−1 + (1− α)α [yM + yM+1] .

An agent arrives at the M + 1st position if the queue was of length M at the end of the
last period and no service occurred:

yM+1 = (1− α) [yM + yM+1] .

Re-arranging this gives yM+1 = yM(1− α)/α and a substitution gives

yM = (1− α)yM−1 + αyM+1.
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This completes our description of the recursion satisfied by the state probabilities
{yn}Mn=1. It is summarised below:
(A.2)

yn =



∑M
r=1 α

ryr + αMyM+1 + zN(1− α)(1− α(1− q)), n = 1;

(1− α)
∑M

r=n−1 α
r−n+1yr + (1− α)αM−n+1yM+1, 1 < n ≤ N ;

(1− α)
∑M

r=N α
r−Nyr + (1− α)αM−NyM+1 − q(1− α)zN , n = N + 1;

(1− α)
∑M

r=N+1 α
r−N−1yr + (1− α)αM−N−1yM+1 − (1− q)(1− α)2zN , n = N + 2;

(1− α)
∑M

r=n−1 α
r−n+1yr + (1− α)αM−n+1yM+1, N + 2 < n < M ;

(1− α)yM−1 + αyM+1, n = M .
(1− α)α−1yM , n = M + 1.

Any non-negative solution to this system satisfying
∑M+1

n=1 yn = 1 is a stationary distribu-
tion.

Before solving this system we will determine the value of zN , the stationary probability
of a queue of length N with an uninformed first in line. Because at any date τ the arrival
stage follows both the service and exit stages, if an agent arrives in the queue at the
first position at date τ , it must be the case that the agent is uninformed: she arrives
after the last service stage, and after the exit stage at which a queue of length N or
N + 1 would have reneged. Therefore y1 = z1. The probability that an individual who
arrived at the first position in the queue is still not served after N − 1 further arrivals is
(1−α)N−1. Therefore, the stationary probability of a queue length N with an uninformed
first individual is (1 − α)N−1y1. Following the same argument for queue lengths n ≤ N ,
we conclude that

(A.3) zn = (1− α)n−1y1, n = 1, 2, . . . , N.

It is now clear that the system (A.2) is homogenous degree one.
Let us use the fact that

(1− α)
M∑

r=n−1

αr−n+1yr = (1− α)yn−1 + α(1− α)
M∑
r=n

αr−nyr

to simplify (A.2):
(A.4)

yn =



α(1− α)−1y2 + zN(1− α)(1− α(1− q)), n = 1;
(1− α)yn−1 + αyn+1, 1 < n < N ;
(1− α)yN−1 + αyN+1 + α(1− α)qzN , n = N ;
(1− α)yN + αyN+2 − (1− α)qzN + α(1− α)2(1− q)zN , n = N + 1;
(1− α)yN+1 + αyN+3 − (1− α)2(1− q)zN , n = N + 2;
(1− α)yn−1 + αyn+1, N + 2 < n < M + 1;
(1− α)α−1yM , n = M + 1.

We will now solve this difference equation. For n = 1, 2, . . . , N we have a difference
equation of the form 0 = (1−α)yn−1− yn +αyn+1 with the initial and terminal conditions
given respectively by the expressions for y1 and yN in (A.4). The characteristic polynomial

27



for this difference equation is (x− 1)(x− (1− α)/α). For α 6= 1/2, it admits two distinct
roots and the difference equation admits the general solution

yn = K +Hφn, φ :=
1− α
α

;

where K and H are arbitrary constants. (We treat the case where α = 1/2 in Appendix
A.3.)

Imposing the initial condition on this equation allows us to solve for K and gives

yn =
(1− α)2(1− α + qα)zN

1− 2α
+Hφn, n = 1, 2, . . . , N.

Substituting this into the equations above for yN , yN+1 and yN+2 then gives:

yN+1 =HφN+1 +
(1− α)2

1− 2α
zN [(1− α)(1− q) + (q/φ)] ,

yN+2 =HφN+2 +
(1− α)2

1− 2α
zN [α + q(1− α)] ,

yN+3 =HφN+3 +
φ(1− α)2

1− 2α
zN [α + q(1− α)] .

Now let us turn to states N + 2 < n ≤ M + 1. Taking the terminal condition given
by the expression for yM and yM+1 in (A.4) and substituting into the yM−1 equation gives

yM−1 =
(

α
1−α

)2
yM+1. Hence, yn = (α/(1− α))M+1−nyM+1. Or alternatively,

yn = φn−N−2yN+2, n = N + 2, . . . ,M + 1.

Combining the two parts of the solution we get

yn =


(1−α)2(1−α+αq)zN

1−2α
+Hφn, n = 1, 2, . . . , N ;

(1−α)2zN
1−2α

((1− α)(1− q) + (q/φ)) +HφN+1, n = N + 1;
(1−α)2(α+q(1−α))zN

1−2α
φn−N−2 +Hφn, n = N + 2, . . . ,M + 1;

We now substitute the value of zN into the y1 equation. A re-writing of (A.3) gives

zN = (1− α)N−1

(
(1− α)2zN

1− 2α
(1− α + αq) +Hφ

)
.

Hence

(1− α)2zN
1− 2α

(1− α + αq) =
H(1− α)N+1φ(1− α + αq)

(1− 2α− (1− α + αq)(1− α)N+1)
= −HφkN ,

where kN := (1− α+ αq)(1− α)N+1/[(1− α+ αq)(1− α)N+1 + 2α− 1]. (kN is defined by
our assumption in the statement of the Lemma.) Substituting into the above then gives:

(A.5) yn = H


φn − kNφ, n = 1, 2, . . . , N ;

φn − kN
(
φ+ q(1−φ)

α(φ+q)

)
, n = N + 1;

φn − k′Nφn−N−1, n = N + 2, . . . ,M + 1;
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where k′N := kN(1 + qφ)/(φ+ q). This gives the final form of the distribution given in the
Lemma.

To verify that this is a legitimate stationary measure we must check that there exists a
scalar H such that the yn, defined by (A.5), are all non-negative. The terms yN+2, . . . , yM+1

are all proportionate, so it is sufficient to check that y1, . . . , yN+2 are non-negative. To
address this question we will consider three separate cases.

Let α∗N satisfy (1 − α + αq)(2α − 1) = (1 − α)N+1. (Then, α∗N < 1/2 and α∗N → 1/2
as N → ∞.) Furthermore, kn < 0 if α < α∗N and kn > 0 if α > α∗N . Also kN is strictly
decreasing when α > α∗N with kN = 1 when α = 1/2. Furthermore noticing that for n > 1,
(1−α)n+2α−1−αn has three roots on [0, 1] (they are 0, 1/2 and 1) and is strictly convex
on (0, 1/2) and strictly concave on (1/2, 1), we obtain that φN+1 − kN has the same sign
as 1− kN . We therefore distinguish:

Case 3.1 (1/2 < α < 1): Since 0 < kN < 1, to ensure y1 ≥ 0 we require H ≥ 0. When
H > 0 the terms y1, . . . , yN+2 decrease (since φ < 1), so it is sufficient to check that
yN+2 ≥ 0. This is the case since φN+1 ≥ kN .

Case 3.2 (α∗N < α < 1/2): Since kN > 1, from y1 ≥ 0 we must have H ≤ 0. The
terms y1, . . . , yN , therefore, decrease (since φ > 1). It is sufficient to check that
yN , yN+1, yN+2 ≥ 0. The first two follow from kN > φN+1. To verify that yN+2 ≥ 0
full substitution for k is necessary to get an inequality that is linear in q. The two
cases q = 0 and q = 1 follow from the above inequalities.

Case 3.3 (α < 1/2): Since kN < 1, from y1 ≥ 0 we must have H ≥ 0. Since kN < 0 all
yn are then positive.

The constant H must be chosen so that the yn defined in (A.5) sum to unity. Thus we
choose,

H−1 =
M+1∑
n=1

φn − (N + 1)φkN − kN
1 + qφ

φ+ q

M−N∑
n=1

φn − kN
q(1− φ)

α(φ+ q)
,

or

H−1 =
φ(1− φM+1)

1− φ
− kNφN − kN

1 + qφ

φ+ q

1− φM−N+1

1− φ
+ (1− q)kN

(1− φ2)

φ+ q
.

It will be convenient to cancel φ when we re-write the above as (9) in the Lemma. After
some algebra it can be verified that for α ∈ (0, 1), H has the same sign as 1− kN , and we
therefore have a legitimate stationary measure with yn > 0 for all n = 1, . . . ,M + 1. The
uniqueness of this stationary distribution follows from the fact that the strategy described
induces an irreducible Markov process on the states n = 1, . . . ,M .

II) Good server under imperfect revelation (M ≤ N): Now the queue never
grows longer than length M , even if the first in line is still experimenting, because no other
agent is willing to join a queue longer than M . The probability of arriving at the M + 1st

position (and then balking) depends on whether the first in line is informed or not. If the
first in line is uninformed and there are M in line, then N−M further unsuccessful service
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events occur before the first in line exits, or N −M + 1 if she exits after observing N + 1
unsuccessful service event, which her strategy prescribes with probability (1 − q). If the
first in line is informed there can be infinitely many unsuccessful service events. Therefore:

yM+1 = zM

N−M∑
i=1

(1− α)i + zM(1− q)(1− α)N−M+1 + (yM − zM)
∞∑
i=1

(1− α)i.

Simplifying:

(A.6) yM+1 =
1− α
α

(
yM − zM(1− α)N−M(1− α + qα)

)
.

The probability of arriving at the first position equals the probability of a queue of length
1, . . . ,M clearing plus the probability of an uninformed first in line reneging after having
observed N or N + 1 unsuccessful service events:

(A.7) y1 = z1 =
M∑
r=1

αryr + αMyM+1 + z1(1− α)N(1− α + qα).

For M < N , the probability of arriving at the nth position satisfies the same recursion as
for N ≤M :

(A.8) yn = (1− α)
M∑

r=n−1

αr−n+1yr + (1− α)αM−n+1yM+1, n = 2, . . . ,M ;

and the probability of arriving at the nth position and the first in line being uninformed is

(A.9) zn = (1− α)n−1z1, n = 2, . . . ,M.

The recursion A.8 gives the same difference equation as before

yn = αyn+1 + (1− α)yn−1, n = 2, . . . ,M ;

which, for α 6= 1/2, admits the same general solution yn = K + Hφn as previously. (We
treat the case where α = 1/2 in Appendix A.3.) Rewriting the initial condition A.7 by
substituting A.8 for y2, we obtain:

y1 =
α

1− α
y2 + z1(1− α)N(1− α + qα).

Imposing this on yn = K +Hφn we obtain:

yn =
(1− α)N+1(1− α + qα)

1− 2α
z1 +Hφn, n = 1, . . . ,M.

We use z1 = y1 to solve for H in the expression above to obtain:

yn = z1
φn−1 − kN

1− kN
, n = 1, . . . ,M ;
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where kN is as defined previously.
Using this expression for n = M together with the terminal condition A.6 (where we

use A.9 to simplify zM) then gives

yM+1 = z1
φM − kNφ−1

1− kN
,

and

yM + yM+1 =
z1

1− α
φM − kN
1− kN

.

Finally, imposing the condition that
∑M+1

n=1 yn = 1 we get

(A.10) 1 =
z1

1− kN

(
M−1∑
n=1

(
φn−1 − kN

)
+
φM − kN

1− α

)
,

which simplifies to

(A.11) 1 =
z1

1− kN

(
1− φM+1

1− φ
− kN(M + φ−1)

)
.

This determines the last part of the solution.
We now verify that all the yn are non-negative. For 2 ≤ n ≤ N + 1, we have that

1 < φn−1 < φN+1 when α < 1/2 and 1 > φn−1 > φN+1 when α > 1/2. So for all admissible
values of α ∈ (0, 1), φn−1 − kN lies between 1 − kN and φN+1 − kN . We have seen in
the treatment of M ≤ N that these two expressions have the same sign for all admissible
values of α. It follows that (φn−1 − kN)/(1 − kN) is positive for all admissible α ∈ (0, 1).
So it is sufficient to verify that z1 ≥ 0.

From (A.11) we have that z1 > 0 for α < α∗N , because kN < 0. In (A.10) the term
in brackets is a sum of positive terms for α > 1/2 and a sum of negative terms for
α∗N < α < 1/2. It therefore has the same sign as 1− kN when α > α∗N and so z1 ≥ 0 also
for α > α∗N . Hence we have derived a legitimate stationary measure when M ≤ N .

III) Bad server:
We conclude by deriving the stationary distribution conditional on the server being in

the bad state. For M ≤ N the transition equations are: w1 = · · · = wN and wN+1 =
(1 − q)wN . For N < M they are: w1 = · · · = wM and wM+1 = (N −M + 1 − q)wM . In
each case the result follows from the requirement that the probabilities sum to 1. �

A.3 Stationary distribution for α = 1/2.

Lemma 8 Let α = 1/2. For N < M , the stationary distribution of queue lengths is

yn =


2(2N+1−(n−1)(1+q))

(M+1)2N+2−(1+q)N(2M−N+1)−4(M−N+q)
, n ≤ N,

2(2N+1−N(1+q))−4q

(M+1)2N+2−(1+q)N(2M−N+1)−4(M−N+q)
, n = N + 1,

2(2N+1−N(1+q))−4

(M+1)2N+2−(1+q)N(2M−N+1)−4(M−N+q)
, n ≥ N + 2.
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For N ≥M , the stationary distribution of queue lengths is

yn =


2(2N+1−(n−1)(1+q))

(M+1)2N+2−(1+q)((M+1)M+2)
, n ≤M,

2(2N+1−(M+1)(1+q))
(M+1)2N+2−(1+q)((M+1)M+2)

, n = M + 1.

Proof: We now derive the stationary distribution of queue lengths n = 1, . . . ,M+1 for the
case where N < M , by solving the system of difference equations in (A.4) for the case where
α = 1/2. For n = 1, 2, . . . , N , yn solves the difference equation 0 = (1−α)yn−1−yn+αyn+1,
whose characteristic polynomial, (x−1)(x−(1−α)/α), admits a unique root when α = 1/2.
We therefore obtain the general solution:

yn = K + nH.

Imposing the initial condition, given by the expression for y1 in (A.4), on this equation,
we solve for H and obtain:

yn = K − n zN
1

4
(1 + q), n = 1, 2, . . . , N.

Substituting into the expressions for yN , yN+1 and yN+2 in (A.4) respectively, we obtain:

yN+1 =K − (N + 1)zN
1

4
(1 + q)− zN

1

2
q,

yN+2 =K − (N + 2)zN
1

4
(1 + q)− zN

1

4
(1− q),

yN+3 =K − (N + 3)zN
1

4
(1 + q) + zN

1

2
q.

The terminal condition, given by the expression for yM+1 in (A.4), gives yM = yM+1, and
from the expression for yn when N + 2 < n < M + 1 in (A.4) we obtain that:

yM+1 = yM = · · · = yN+3.

Substituting the expression for y1 into zN = (1− α)N−1y1 gives:

zN = ζK, ζ :=
4

2N+1 + 1 + q
.

Imposing that the yn sum to unity:

1 =
N∑
n=1

yn + yN+1 + yN+2 +
M+1∑
n=N+3

yN+3,

and solving for K we obtain:

K−1 = M + 1− ζ 1

8
(N + 3)(2M −N)(1 + q) + ζ

1

2
(M −N − 2)q − ζ 1

4
(1− q).

The resulting stationary distribution of queue lengths when N < M is described in the
above lemma. (The case N ≥M can be analysed in a similar fashion.) �
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A.4 Proof of Lemma 1

Proof: Let πss′ denote the probability of moving from state s ∈ S to state s′ ∈ S under the
Markov process followed by the queue in the good state. Also, let πs = {πss′}s′∈S ∈ ∆(S)
denote the probability distribution of tomorrow’s state s′ ∈ S conditional on today’s state
being s. Finally, let s∗ denote the queue state where there is one uninformed individual in
the queue at the end of the period.

We can bound the distance between two distributions πs and πr in the following way∑
s′∈S

|πss′ − πrs′ | ≤ |πss∗ − πrs∗|+ (1− πss∗) + (1− πrs∗), ∀s, r ∈ S.

(This upper bound follows by separating out the s′ = s∗ term and then realizing that
the remaining terms would be maximised if the support of πs and πr only had the point
s∗ in common.) Without loss of generality, suppose that πss∗ ≥ πrs∗ . If this is so, then
substituting |πss∗ − πrs∗| = πss∗ − πrs∗ we have

‖πs − πr‖ :=
1

2

∑
s′∈S

|πss′ − πrs′| ≤ 1− πrs∗ ≤ 1− αM , ∀s, r ∈ S.

The final inequality above follows from the construction of the service process: πss∗ ≥ αM

for all s ∈ S. The extremes of the above chain of inequalities imply that the Dobrushin
Coefficient of this process is less than 1− αM . The Lemma then follows by Theorem 7.2,
p.237, of Brémaud (1999). �

A.5 Proof of Lemma 2

Proof: Individuals have the prior µ that the server is in the good state and the prior
ν(1 − ν)τ that they have arrived in the system at calendar date τ . Let yτn (respectively
wτn) denote the probability that the individual arriving at calendar date τ finds herself at
the nth position in line, conditional on individuals using the postulated queueing strategy
and the server being good (respectively bad). She would then attach probabilities

µ
∞∑
τ=0

ν(1− ν)τyτn := µβ1
n

(1− µ)
∞∑
τ=0

ν(1− ν)τwτn := (1− µ)β2
n

to the server state being good or bad.
Recall that yn denotes the stationary probability of queue length n in the good state.

The following calculation shows that |β1
n − yn| → 0 as ν → 0.

∣∣yn − β1
n

∣∣ ≤ ∞∑
τ=0

ν(1− ν)τ |yn − yτn|
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≤
∞∑
τ=0

ν(1− ν)τ (1− αM)τ

=
ν

(1− (1− ν)(1− αM)
→ 0 as ν → 0.

Where the second inequality follows from Lemma 1. (Note the rate of convergence here is
independent of q.)

Recall that wn denotes the stationary probability of queue length n in the bad state.
We now prove that |wn − β2

n| → 0 as ν → 0 at a rate that is independent of q. The
sum

∑t+N
τ=t w

τ
n is the expected number of times the queue has length n in over the periods

t, . . . , t+N . In N + 1 consecutive periods, state n < N must be visited at least once and
can be visited twice if the initial state is n and state N + 1 was not visited. This gives the
two equalities:

(A.12)
t+N∑
τ=t

wτn = 1 + qwtn,
t+N∑
τ=t+1

wτn = 1− (1− q)wt+1
n+1;

(the second inequality uses the fact that wtn = wt+1
n+1.) We can use these to re-write β2

n. Let

S
(N+1)τ
n := ν

1−(1−ν)N+1

∑N
t=0(1− ν)tw

(N+1)τ+t
n then

β2
n = (1− (1− ν)N+1)

∞∑
τ=0

(1− ν)(N+1)τS(N+1)τ
n

= (1− (1− ν)N+1)
∞∑
τ=0

(1− ν)(N+1)τ

(∑N
t=0 w

(N+1)τ+t
n

N + 1
+

(
S(N+1)τ
n −

∑N
t=0w

(N+1)τ+t
n

N + 1

))

Now observe that S
(N+1)τ
n → 1

N+1

∑N
t=0w

(N+1)τ+t
n as ν → 0 and the order of convergence

is o(ν). We then can substitute from (A.12) to get

β2
n = (1− (1− ν)N+1)

∞∑
τ=0

(1− ν)(N+1)τ 1 + qw
(N+1)τ
n

N + 1
+ o(ν)

=
1

N + 1
+

q

N + 1
(1− (1− ν)N+1)

∞∑
τ=0

(1− ν)(N+1)τw(N+1)τ
n + o(ν)(A.13)

By taking blocks of length N and making a different substitution from (A.12) we can also
get

(A.14) β2
n =

1

N
− 1− q

N
(1− (1− ν)N)

∞∑
τ=0

(1− ν)NτwNτn+1 + o(ν)

When q = 0 or q = 1, (A.13) and (A.14) are sufficient to prove that |β2
n − wn| → 0 as

ν → 0. However, for q ∈ (0, 1) more is required.
Now we apply similar reasoning to Lemma 1 for the stochastic process followed by the

queues in the bad state. Consider a queue starting in state n and another queue starting
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in state n′ > n. In (N + 1)(n′− n) periods the queue starting in state n will be in state n′

if it never visits state N + 1. In the same number of periods the queue starting in state n′

will return to state n′ if it always visits state N +1. The first of these histories occurs with
probability qn

′−n the second occurs with probability (1−q)n′−n. Thus after (N+1)(n′−n)
periods the initial states n and n′ will be in the same state with at least probability qn

′−n;

where q := min{q, 1 − q}. Hence after N(N + 1) periods there is at least probability qN

that any two initial states result in the same current state. By Dobrushin’s result we then
have that

(A.15)
N+1∑
n=1

|wN(N+1)t
n − wn| < (1− qN(N+1))t.

Finally, we consider |β2
n−wn|. We begin by doing the case where q > 1/2 so q = 1− q.

A substitution from (A.14) and wn = (N + 1− q)−1 gives

|β2
n − wn| ≤

1− q
N + 1− q

(1− (1− ν)N)
∞∑
τ=0

(1− ν)Nτ
∣∣∣∣ 1

N + 1− q
− wNτn

∣∣∣∣+ o(ν)

≤ 1− q
N + 1− q

(1− (1− ν)N)
∞∑
τ=0

(1− ν)NτK(1− qN(N+1))τ/(N+1) + o(ν)

≤ K

N + 1− q
(1− (1− ν)N)

∞∑
τ=0

(1− ν)Nτ (1− q)e−(1−q)τ/(N+1) + o(ν)

≤ K(N + 1)

e(N + 1− q)
(1− (1− ν)N)

∞∑
τ=1

(1− ν)Nτ

τ
+ o(ν)

= − K(N + 1)

e(N + 1− q)
(1− (1− ν)N) log(1− (1− ν)N) + o(ν)

The second inequality here substitutes from (A.15) and introduces the constant K to
accommodate the fact that (A.15) applies every N(N + 1) periods but we wish to bound
every N + 1 periods. The third inequality uses the fact that 1 − x ≤ e−x. The forth
inequality follows as xe−x ≤ e−1 implies (1 − q)e−(1−q)τ/(N+1) ≤ (N + 1)/(τe) for τ > 0
(the τ = 0 term can be included in the o(ν) factor). The final equality evaluates the sum
G(x) :=

∑∞
n=1 x

n/n by observing that G′(x) = 1/(1−x). Hence we have that |β2
n−wn| → 0

as ν → 0 independently of q.
The final step is in this proof is to apply the convergence results. The individual’s true

posterior upon arriving at a queue at the nth position satisfies

µ0
n =

µβ1
n

µβ1
n + (1− µ)β2

n

.

We now compare this posterior to µ̄0
n, the posterior based on the stationary distributions:

∣∣µ̄0
n − µ0

n

∣∣ =

∣∣∣∣ µyn
µyn + (1− µ)wn

− µβ1
n

µβ1
n + (1− µ)β2

n

∣∣∣∣
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≤
∣∣∣∣ µyn
µyn + (1− µ)wn

− µβ1
n

µβ1
n + (1− µ)wn

∣∣∣∣+

∣∣∣∣ µβ1
n

µβ1
n + (1− µ)wn

− µβ1
n

µβ1
n + (1− µ)β2

n

∣∣∣∣
=

µ(1− µ)wn|yn − β1
n|

(µyn + (1− µ)wn)(µβ1
n + (1− µ)wn)

+
µβ1

n(1− µ)|wn − β2
n|

(µβ1
n + (1− µ)wn)(µβ1

n + (1− µ)β2
n)

≤ µ|yn − β1
n|

(µβ1
n + (1− µ)wn)

+
(1− µ)|wn − β2

n|
(µβ1

n + (1− µ)wn)

≤ 1

β1
n

|yn − β1
n|+

1

wn

∣∣wn − β2
n

∣∣
→ 0 as ν → 0.

To perform this calculation for individuals who have been in the system for t periods,
i.e. for |µtn − µ̄tn|, it is necessary to account for an individual’s learning from observing
the behaviour of others and service events. Given the postulated strategies, an individual
either depresses her belief because no service occurs, or become certain that the server is
good (when service occurs or the first in line does not renege after N unsuccessful service
events). When the individual is certain that the server is good, µtn = 1, and then also
µ̄tn = 1 and the bound holds. When the individual has observed no service for t periods it
is necessary to multiply β1 by the factor (1− α)t to determine the updated posterior µtn:

(A.16) µtn =
µβ1(1− α)t

µβ1(1− α)t + (1− µ)β2

.

The same factor multiplies µyn in µ̄tn (see (15)). Hence the bound above applies to |µtn−µ̄tn|
for all t. As the bound is a continuous function of ν the result follows. �

A.6 Proof of Lemma 3

Proof: An individual’s beliefs at calendar date τ about the state of service are an expec-
tation: µtτn = E(1good | hττ−t), where 1good is the indicator function for the event that the
server state is good and hττ−t describes the t periods of history that the agent who is in nth

position at date τ has observed if she has been queueing for t periods. (The history hττ−t
must be consistent with the nth agent arriving at date τ − t and still being in line at date
τ .) Notice that the n + 1st agent in line at date τ has observed strictly less information
than the nth in line (the history hττ−t observed by the nth in line includes the entire history
hττ−t+1 observed by the n+1st in line plus what the nth in line observed in the period before
the n+ 1st arrived). By the nesting of the information sets we have

µt−1τ
n+1 = E(1good | hττ−t+1) = E(E(1good | hττ−t) | hττ−t+1) = E(µtτn | hττ−t+1),

for any history consistent with the nth agent arriving at date τ − t and still being present
at date τ .

For n ≤ N + 1, the variable µtτn takes only two values: unity and µtn < 1 defined in
(A.16). (It takes this value if the nth in line has learnt nothing from others and has revised
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downward her beliefs as a result of waiting for service.) Thus if we re-write the extremes
above we have

µt−1τ
n+1 = 1π(hττ−t+1) + (1− π(hττ−t+1))µtn,

where π(hττ−t+1) is the probability the n+1st in line attaches to the nth in line being certain
that the server is good. If µtτn < 1, then hττ−t does not contain a service event. Therefore
(i) by the nesting of information sets, neither does hττ−t+1 and π(hττ−t+1) ∈ (0, 1), and (ii)
µtτn = µtn. Then a substitution and a rearranging of the above gives:

µt−1τ
n+1 − µtτn = π(hττ−t+1)(1− µtn) > 0.

which proves the result. �

A.7 Proof of Lemma 4

Proof: Part (a):
Assume that M > N > 1 and q = 1. From (14) we have that µ̄0

1 < µ if and only if
Ny1 < 1. A substitution from (9) and (8) gives

1

Ny1

= 1 +

1−φN
1−φ −N + (1− kN

φN+1 )φ
N−φM+1

1−φ

N(1− kN)

= 1 +

∑N−1
i=0 (φi − 1) + (1− kN

φN+1 )φ
N−φM+1

1−φ

N(1− kN)

= 1 +

φN−φM+1

1−φ

(
1− 1−φN+1

(1−φ)(1+φ)N

)
−
∑N−1

i=0
1−φi
1−φ

(
1− φ+ φ

(
φ

1+φ

)N)
N

(A.17)

(To get the final line we substitute kN = φN+1/(φN+1 + (1 − φ)(1 + φ)N), when q = 1.)
Notice that the first term in the numerator is positive for all φ > 0, because: M > N and
(1 + φ)N >

∑N
i=0 φ

i. Thus a necessary and sufficient condition for Ny1 > 1 is that

(A.18)

(∑N−1
i=0

1−φi
1−φ

φN−φM+1

1−φ

)
1− φ+ φN+1

(1+φ)N

1− 1−φN+1

(1−φ)(1+φ)N

> 1.

We will show that the left-hand side of (A.18) is decreasing in φ until it becomes negative
and then stays negative for all larger φ. Therefore, there is a threshold value of φ such
that (A.18) holds iff φ is below the threshold.

First consider the quotient in parentheses in (A.18). This can be written as∑N−1
i=0

∑i−1
j=0

φj

φN∑M−N
i=0 φi

.

The denominator is increasing in φ and the numerator is decreasing in φ, so the term in
parentheses in (A.18) decreases in φ for all φ > 0.
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Now suppose φ < 1 and consider the second fraction in (A.18). The numerator equals
1−

∑N
i=1[φ/(1 + φ)]i > 0, which decreases in φ. The denominator of this fraction has the

derivative (in φ) equal to

N

(1− φ)(1 + φ)N

[
1 + φN

1 + φ
−N−1 1− φN

1− φ

]
.

Notice that (1+φN)/(1 +φ) ≥ (1 +φN−1)/2 (with equality for N = 1 and strict inequality
for N ≥ 2) and (1 + φN−1)/2 ≥

∑N−1
i=0 φi/N (with equality for N = 1, 2 and strict

inequality for N ≥ 3). Therefore, the difference above is non-negative and this derivative
is non-negative when φ < 1. Hence we have shown that the second fraction in (A.18)
decreases when φ < 1.

Now suppose φ > 1. We write the second fraction in (A.18) as

(A.19)
(1− φ)(1 + φ)N + φN+1

(1 + φ)N − 1−φN+1

1−φ

.

The denominator of (A.19) is an nth order polynomial in φ with positive coefficients so it
is increasing in φ. The numerator of (A.19) has a derivative in φ that equals

−(1 + φ)N−1

(N + 1)
φ

1 + φ

1−
(

φ
1+φ

)N−1

1− φ
1+φ

+ 1−N


The term in braces increases in φ, thus it is smallest when φ = 1. Evaluating these braces
at φ = 1 gives 2(1 − (N + 1)2−N) which is positive for all N > 1. Thus this derivative is
strictly negative. It follows that (A.19) decreases when φ > 1 until the numerator becomes
negative at which point (A.19) remains negative for all greater φ.

When M ≤ N substitutions from (11) and (10) give

1

(M + 1)y1

=

1−φM+1

1−φ − kN(M + φ−1)

(M + 1)(1− kN)

= 1 +

∑M
i=0(φi − 1) + kN(1− φ−1)

(M + 1)(1− kN)
.

When φ < 1 (and kN < 1) the top of the fraction is negative, so y1 > 1/(M + 1) and
y1 ≥ 1/N unless M = N . Thus for all φ < 1 we have that µ̄1 > µ. When φ > 1 and
kN > 1 the top of the fraction is positive and the bottom is negative so still y1 > 1/(M+1).
When φ > 1 and kN < 0 then a substitution for kN gives

(A.20)
1

y1

= M + 1−
(

φ

1 + φ

)N
−

M∑
i=0

φi − 1

φ− 1

(
1− φ+ φ

(
φ

1 + φ

)N)
Differentiation with respect to φ (and abbreviating the summation to Σ and the final
parenthesis to A) gives

−N
φ2

(
φ

1 + φ

)N+1

+ Σ− Σ

(
φ

1 + φ

)N
+ Σ

N

φ

(
φ

1 + φ

)N+1

− ∂Σ

∂φ
A
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As A is negative (when kN < 0) we have a lower bound on this derivative

Σ

(
1−

(
φ

1 + φ

)N)
+
N

φ

(
φ

1 + φ

)N+1 [
Σ− 1

φ

]
> 0, φ > 1.

Thus 1/[(M + 1)y1] increases in φ when kN < 0 which is what we need to show.
The lower bound on ᾱ follows from observing that the left of (A.18) is negative iff

1 − φ + φ(φ/(1 + φ))N < 0. This is decreasing in N so tightest when N = 2, giving the
inequality 1 + φ < φ2. The upper bound on ᾱ follows from the observing that (when
α > 1/2) the unbracketed term in (A.18) is bounded above by 1− φ hence when α > 1/2
a sufficient condition for (A.18) is

(1− φ)
N−1∑
i=1

(1− φi) > φN − φM+1.

Letting M → ∞ and setting N = 2 gives the sufficient condition φ < 1/2. The upper
bound then follows.

Part (b) Assume that M > N > 1. From (A.17) we get

1

y1

= N +
φN − φM+1

1− φ

(
1− 1− φN+1

(1− φ)(1 + φ)N

)
−

N−1∑
i=0

1− φi

1− φ

(
1− φ+ φ

(
φ

1 + φ

)N)

=
N−1∑
i=0

φi +
φN − φM+1

1− φ

(
1− 1− φN+1

(1− φ)(1 + φ)N

)
− φ

(
φ

1 + φ

)N N−1∑
i=0

1− φi

1− φ

=
M∑
i=0

φi − φN − φM+1

1− φ
1− φN+1

(1− φ)(1 + φ)N
− φ

(
φ

1 + φ

)N N−1∑
i=0

1− φi

1− φ

=
1− φM+1

1− φ
−
(

φ

1 + φ

)N {
φ
N−1∑
i=0

1− φi

1− φ
+

1− φM−N+1

1− φ
1− φN+1

1− φ

}
We now focus on the term in braces this equals

1

1− φ

[
φN −

N∑
i=1

φi + (1− φM−N+1)
N∑
i=0

φi

]
=

1

1− φ

[
1− φ+ (N + 1)φ− φM−N+1

N∑
i=0

φi

]

= 1 + φ
N∑
i=0

1− φM−N+i

1− φ

Hence

(A.21)
1

y1

=
1− φM+1

1− φ
−
(

φ

1 + φ

)N {
1 + φ

N∑
i=0

1− φM−i

1− φ

}
We now study how this changes as N increases, so let us write

1

y1(N)
= KM −

(
φ

1 + φ

)N
HN .
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Then
1

y1(N)
− 1

y1(N − 1)
=

(
φ

1 + φ

)N (
HN−1 −HN +HN−1

1

φ

)
> 0

(A substitution gives the sign.) When M ≤ N we have from (A.20)

(A.22)
1

y1

=
M∑
i=0

φi −
(

φ

1 + φ

)N [
1 + φ

M∑
i=0

φi − 1

φ− 1

]
.

This implies y1 decreases as N increases.
Part (c): To show that µ̄N1 to decreases in N it is sufficient to show that N(1 − α)N

decreases in N as y1 decreases in N from part (2). But N(1− α)N decreases in N for all
N > 1/α. Finally, (1− α)Ny1 will converge to zero as N increases because y1 ≤ 1. �

A.8 Proof of Lemma 5

Proof: In Proposition 1, (6) defines a map from priors µ ∈ (0, 1) to the optimal waiting
time, m∗ ∈ Z+, for the first in line

m∗(µ) :=

⌈
(log(1− α))−1 log

(
1− µ
µ

ψ(1− δ)
α(ψδw − 1)

)⌉
+

.

This is an increasing step function from (0, 1) to R+ that jumps upwards and converges
to infinity as µ → 1. Define m†(µ) to be the staircase correspondence, from (0, 1) to R+,
that includes the intervals where m∗ jumps and everywhere else equals m∗. Finally, let f
denote the inverse of m†, that is f(x) := {µ : x ∈ m†(µ)}. On can interpret f(x) as the
set of priors for which the optimal time to wait is x. (Waiting a non-integer time indicates
that both the of the two nearest integers are optimal.) The correspondence f increases in
x and f(0) is the interval of priors [0, µ] and as x tends to infinity f(x) → 1. Where µ is
the largest prior for which it is optimal for the first in line to wait zero periods

µ :=
1− δ

δα(w − 1)
.

We now define a second function that maps R+ to [0, 1]. For x ∈ R+ consider the
strategy σ that sets N(x) = bxc and q(x) = x − bxc (where bxc is the greatest integer
less than or equal to x) and otherwise satisfies the properties of Definition 1. The strategy
(N(x), q(x)) determines a good-state stationary measure, y(x), by Proposition 3 and a
value for µ̄n1 (x), the first in line’s beliefs after n periods of unsuccessful experimentation
given this stationary distribution. As q varies so y1 and µ̄1 vary continuously (by (8) and
(9)), hence µ̄n1 (x) is a continuous function from R+ to [0, 1]. We will consider the function

g(x) := µ̄
N(x)
1 (x),

that is, the first in line’s posterior after N(x) periods of unsuccessful experimentation
when the stationary distribution is determined by the strategy (N(x), q(x)). This is also
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continuous in x and, from, Lemma 4(c), we have g(x) → 0 as x → ∞ and µ = g(x) for
any x < 1.

If µ ≤ µ̄, it is never optimal for any agent to wait for service to arrive and the equi-
librium consists of zero queue lengths. If µ > µ̄ the continuous function g(x) lies above
f(x) for x = 1 but limx→∞ g(x) − f(x) = 0 − 1 < 0 by Lemma 4(c). The function g(x)
is continuous and the correspondence f has a closed graph on (0, 1), so there must exist

x∗ ≥ 0 such that µ̄
N(x∗)
1 = f(x∗). If x∗ is an integer (x∗ = N(x∗)) this says, if the first

in line had prior µ0
1(x∗) and after x∗ periods of unsuccessful experimentation it would be

optimal for the first in line to leave. If x∗ is not an integer (N(x∗) + 1 > x∗ > N(x∗))
the intersection must occur on a flat portion of f and on such a segment (at the prior
f(x∗)) the individual is indifferent between engaging in N(x∗) + 1 and N(x∗) periods of
experimentation. Thus in both cases the first in line’s strategy is optimal given the derived
beliefs.

Finally, observe that the previous calculations ignored the first in line’s priors about
timing. By Lemma 2, this moves the function g(.) by at most ε and will move the point
of intersection, x∗, also by at most ε. �

A.9 Proof of Lemma 6

Assume that q = 1. We are interested in the behaviour as δ → 1 of equation (6) which
determines the equilibrium value of N :

N = N (µ̄0
1(N), 1)

⇔ N =

⌈
(log(1− α))−1 log

(
1− µ̄0

1(N)

µ̄0
1(N)

ψ(1− δ)
α(ψnδw − 1)

)⌉
+

Looking at the continuous version of this (i.e. assuming that both N and M belong to
R+), and taking the exponential on both sides, we get:

(1− α)N =
1− µ̄0

1(N)

µ̄0
1(N)

ψ(1− δ)
α(ψnδw − 1)

.

Simplifying the last term, and substituting the expression for µ̄0
1(N), we obtain the follow-

ing, auxiliary problem:

(A.23) (1− α)N =
1− µ
µ

∆
x1(N)

y1(N)
=: f(N,α, δ),

where ∆ := 1−δ
δ(αw+1−α)−1

and y1(N) and x1(N) are the stationary probabilities defined in
Proposition 3. We can now turn to the proof of Lemma 6.

Proof: (Existence) We begin by establishing that for any α ∈ (0, 1), or equivalently for
any φ > 0, (A.23) admits a solution N∗(δ) if δ is sufficiently large. We first show that for
any δ, as N → +∞ the left-hand side of (A.23) tends to zero faster than its right-hand
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side. Because limN→+∞N(1 − α)N = 0, and limN→+∞
1

y1(N)
= 1−φM+1

1−φ for φ 6= 1, and

(M + 1) for φ = 1, we obtain that indeed,

lim
N→+∞

1−µ
µ

∆ 1
Ny1(N)

(1− α)N
= +∞.

On the other hand, for N = 1 and for all φ > 0, we have that y1(1) = 1 so that f(1, α, δ) =
1−µ
µ

∆. Since ∆ is decreasing in δ for δ > (1 − α + αw)−1, for all α ∈ (0, 1) and for all

µ ∈ (0, 1), there exists a δ1 ≥ (1− α + αw)−1 such that ∀δ > δ1, f(1, α, δ) < (1− α).
By the continuity of f(N,α, δ) and (1 − α)N , and by the intermediate value theorem,

equation (A.23) therefore admits a solution N∗(δ) for all δ > δ1.

(Lemma 6 (a))Let 1/2 < α < 1, or equivalently, let 0 < φ < 1. We now turn our
attention to the limit of N∗(δ) as δ → 1. For any µ ∈ (0, 1),

lim
δ→1

f(N,α, δ) =
1− µ
µ

1

N
lim
δ→1

∆

y1(N)
.

Unambiguously, we have that limδ→1 ∆ = 0. Furthermore, for q = 1, for all N ∈ R+,

lim
M→∞

y1(N) =

[
1

1− φ

(
1− (1 + φN)

(
φ

1 + φ

)N)]−1

,

which belongs to (0, 1] for all N ∈ R+ and for all 0 < φ < 1. Therefore, limδ→1 f(N,α, δ) =
0 for all N ∈ R+.

We conclude that, by the continuity in N of both (1−α)N and f(N,α, δ), the solution
N∗(δ) to the auxiliary problem (A.23) tends to +∞ as δ → 1, establishing Lemma 6 (b).

(Lemma 6 (b))Let 0 < α < 1/2, or equivalently, φ > 1. For any µ ∈ (0, 1),

lim
δ→1

f(N,α, δ) =
1− µ
µ

1

N
lim
δ→1

∆

y1(N)
.

Furthermore, for q = 1, we can rewrite:

(A.24) y1(N) =

[
1

1− φ
[
−φM+1κ+ θ

]]−1

,

where κ := 1− 1
(1+φ)N

1−φN+1

1−φ and θ := 1− (1 + φN)
(

φ
1+φ

)N
.

First note that limδ→1 f(1, α, δ) = 0 since y1(1) = 1 so that limδ→1
∆

y1(1)
= 0. We now

establish that, for all N > 1, limδ→1 f(N,α, δ) = +∞. For N > 1, we have that 0 < κ < 1
for all φ > 0, and that |θ| < ∞ for all α > 0. From (A.24), and since limδ→1 ∆ = 0 and
limδ→1 φ

M+1 = +∞, we therefore have that:

lim
δ→1

∆

y1(N)
= − κ

1− φ
lim
δ→1

∆φM+1.
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As δ tends to one, we can approximate ∆ by (1− δ)[α(w− 1)]−1. Similarly we approx-

imate φM+1 by φ
1

1−δ so that:

∆φM+1 ≈ 1− δ
α(w − 1)

φ
1

1−δ ,

which tends to +∞ when δ → 1. This is because limε→0 ε ln ε = 0 so that (ε ln ε+ lnφ)/ε,
and therefore ε φ1/ε, tend to +∞ as ε→ 0.

Evaluating the derivative of f(N,α, δ) at N = 1, we obtain:

∂

∂N
f(N,α, δ)

∣∣∣∣
N=1

= φM+1

[
(φ2 − 1) ln(1 + φ)− φ2 lnφ

(1 + φ)(1− φ)2

]
+

1

φ2 − 1
− φ[ln(1 + φ)− lnφ]

φ− 1
.

The term multiplying φM+1 is positive for φ > 1. Therefore, as δ → 1 so that M → +∞,
we have that ∂

∂N
f(N,α, δ)

∣∣
N=1
→ +∞.

Finally, observe that for 0 < α < 1, the left-hand side of (A.23) is strictly between
0 and 1 − α. From this and the limits of f(N,α, δ) and ∂

∂N
f(N,α, δ)

∣∣
N=1

as δ → 1, we
conclude that the solution N∗(δ) to the auxiliary problem (A.23) is unique and tends to
one as δ → 1, establishing Lemma 6 (c). Notice that this solution requires that the equi-
librium value of q be in (0, 1).

We have just established that there cannot be an equilibrium with N < M for the case
0 < α < 1/2. This is because M → ∞ as delta → 1, so that for N > 1 we have that
y1(N) = 0: an individual arriving first in line becomes almost certain that the server is in
the bad state. Therefore we cannot have N > 1 in equilibrium, since this would give the
first in line a payoff of δN < 1, and she would be better off balking from the outset.

For N = 1 and q = 1 the queue can never grow longer than 1 and we have that
y1(N) = 1: arriving at the first position in line provides no additional information and
each agent optimises on the basis of her prior belief µ. As δ →∞ however, her willingness
to experiment grown without bound, and N = 1 cannot be an equilibrium either.

For N = 1 and q ∈ (0, 1), µ0
1 is a continuous, increasing function of q and takes values

between 0 and µ. The equilibrium value q∗ solves 1 = N (µ∗, 1) and U1(1, µ∗) = U1(2, µ∗),
where µ∗ denotes µ0

1|(q,N,M)=(q∗,1,M).

(Lemma 6 (c))For α = 1/2, we have

x1(N)

y1(N)
=
M(2N+1 − 2(N + 1)) + 2N+1 − 2 +N(N + 1)

N2N+1
.

so that

f(N, 1/2, δ) =

(
2N+1 − 2 +N(N + 1)

N2N+1
+

ln(δw)

ln(2− δ)
2N+1 − 2(N + 1)

N2N+1

)
1− µ
µ

2(1− δ)
δ(w + 1)− 2

We are interested in the limit of f(N, 1/2, δ) as δ tends to one. Since M tends to
infinity, while ∆ tends to zero, we simplify:

lim
δ→1

f(N, 1/2, δ) = lim
δ→1

{
ln(δw)

ln(2− δ)
2(1− δ)

δ(w + 1)− 2

}
1− µ
µ

2N+1 − 2(N + 1)

N2N+1
.
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We obtain the limit of the term in curly brackets using l’Hôpital’s rule, so that

lim
δ→1

f(1/2, δ) =
2 lnw

w − 1

1− µ
µ

2N+1 − 2(N + 1)

N2N+1
.

Therefore, in the limit, the auxiliary problem becomes

(1/2)N =
2 lnw

w − 1

1− µ
µ

2N+1 − 2(N + 1)

N2N+1
.

A solution N∗ to this problem sets the ratio

(A.25)
2 lnw

w − 1

1− µ
µ

2N − (N + 1)

N

equal to one. The ratio’s derivative with respect to N ,

2 lnw

w − 1

1− µ
µ

(2N ln 2− 1)N − (2N − (N + 1))

N2
,

is strictly positive whenever 2N [N ln 2− 1] > −1. This inequality is satisfied for all N ≥ 1
since the left-hand side is strictly increasing in N , and strictly greater than 2 when N = 1.
The ratio in (A.25) is therefore strictly increasing in N . Moreover it is easy to see that
this ratio is equal to zero when N = 1, and tends to infinity when N → +∞. We therefore
conclude, by the intermediate value theorem, that the solution N∗ to the limit of the fixed
point problem as δ → 1 exists and is unique.

In fact, N∗ solves:

2N − 1 =

(
1 +

1−µ
µ

2 lnw
w−1

)
N.

The right-hand side is increasing in µ. For any µ < 1, the slope of the right-hand side
is finite and N∗ is finite. For µ → 1, N∗ → ∞. For µ → 0, N∗ solves 2N − 1 = N , i.e.
N∗ = 1.
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A.10 Proof of Lemma 7

Proof: We begin by showing that, based on lemma 6, it is indeed the case that, as δ → 1,
the equilibrium values of N and M satisfy our assumption that M > N . Our assumption
is satisfied for α ≤ 1/2, where we have established that the equilibrium value of N is finite,
whereas M goes to infinity. We now show that it is also satisfied when α > 1/2.

We begin by showing that ψn → 1 for n = 1, . . . , N as δ → 1. For δ close to 1,
approximating y1(N) by:

lim
M→+∞

y1(N) =

[
1

1− φ

(
1− (1− φN)

(
φ

1 + φ

)N)]−1

,

we can approximate the equilibrium condition, N = N (µ0
1(N), 1), by (1−α)N = G(1− δ),

for a constant G independent of δ. Because 1− ψ = (1− δ)φψ we have:

logψN = N logψ ≈ N(ψ − 1) = −N(1− δ)φψ = −N(1− α)N
φψ

G
.

(Here we approximate logψ by ψ− 1 which becomes arbitrarily good as δ → 1 or ψ → 1.)
Letting δ → 1 or N → ∞ the right above tends to zero so ψN → 1 as δ → 1. Since
1 ≥ ψn ≥ ψN we have proved our claim. In contrast, ψM → 1/w < 1 as δ → 1. A
consequence of this is that M > N for all δ large, and our assumption is discharged.

We will now show that deviating from the strategy σ∗(q∗, N∗,M∗) is suboptimal for
the nth in line, where n = 2, . . . ,M + 1. First observe that reneging when the first in line
reneges is always optimal for arrival n > 1. When the first in line reneges the nth in line’s
posterior on the queue state equals the first in line’s (as their information sets are nested).
If it were optimal for the first in line to exit and get the payoff 1 those behind her in the
queue strictly prefer to exit as their value to waiting in the good state is strictly less than
the first in line’s value. Second, observe that those who arrive in place M∗ ≥ n > N∗ + 1
strictly prefer to wait for service because they know the server is good. Third, observe
that M∗ = |mathcalM ensures that it is suboptimal to join longer queues.

It remains to check that no nth in line (for n = 2, . . . , N∗ + 1) prefers to renege before
they observe the first in line reneging. As before, we begin by assuming the posteriors
are determined ignoring the prior information on the calendar date. We will show that
each possible deviation from the strategy σ∗(q∗, N∗,M∗) reduces the expected payoff of an
individual arriving nth in line.

First, we describe the nth-in-line’s payoff, for n = 2, . . . , N∗ + 1, from deviating from
her equilibrium strategy and reneging before she observes the first in line renege. The nth

in line may have to wait until just before the N∗ + 2st arrival to observe the first in line
renege, so early renege can occur after m = 0, 1, . . . , N∗ − n + 1 periods, although the
first in line may also renege in the last of these periods with positive probability. In (4)
we defined the nth-in-line’s expected value of reneging after m unsuccessful service events
(and waiting if service is observed) assuming there was no social learning.

Un(m, µ̄0
n) = µ̄0

n

[
1− µ̄0

n

µ̄0
n

δm + ψnwδ − (1− α)mδm(ψnwδ − 1)

]
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If the nth in line reneges in periods m = 0, 1, . . . , N∗ − n there is no social learning,
because the first in line never reneges until just before the line reaches length N∗ + 1.
Thus, Un(m, µ̄0

n) equals the nth-in-line’s expected payoff if she chooses to deviate from her
equilibrium strategy and renege at m = 0, 1, . . . , N∗−n. If the nth in line chooses to renege
at m = N∗ − n + 1 and the first in line has not, then there is social learning because the
first in line’s decision whether to renege or not is informative about her posterior belief.
The social learning (from seeing the first in line not reneging) would lead the nth in line to
revise upwards the probability she attaches to the server being good. Thus the expression
above overestimates the payoff from reneging at m = N∗ − n + 1 by omitting the benefit
of this social learning. Hence Un(m, µ̄0

n), for n = 2, . . . , N∗+ 1 and m = 0, . . . , N∗−n+ 1,
is an overestimate of the payoff from early reneging at this equilibrium.

To verify equilibrium we will show that Un(m, µ̄0
n), for n = 2, . . . , N∗ + 1 and m =

0, . . . , N∗ − n + 1, is less than what the nth in line expects to get by reneging if and
only if the first in line does. We will use a lower bound for the payoff to abiding by the
equilibrium by assuming that the first in line experiments for N∗+1 periods with certainty,
and then reneges (rather than reneging with positive probability after N∗ unsuccessful
service events); that is, we consider the case where q = 0.

Assume that the server is in the good state and let An be the nth in line’s expectation
of the payoff she will obtain once the queue has reached length N∗ + 1, and the first in
line’s behaviour (renege or not) reveals her posterior belief (µN

∗+1
1 or 1 respectively). By

Proposition 3 (and ignoring the prior on timing), the individual who joined the queue at
the nth position attaches probability y1(1−α)n−1/yn to the to the first-in line never having
observed service. This is, therefore, the probability that the nth in line attaches to her
reneging together with the first in line once the queue reaches length N∗+ 1, in which case
the nth in line’s payoff is 1. She attaches the complementary probability to the first in line
not reneging once the queue reaches length N∗ + 1. In that case, the nth in line’s payoff is
ψnδw, by (1).

Thus

An = ψnδw

(
1− (1− α)n−1y1

yn

)
+

(1− α)n−1y1

yn
≥ 1.

If the nth in line abides by the equilibrium and waits for N∗ − n + 2 unsuccessful service
events so as to herd on the first in line’s behaviour when the queue is length N∗ + 1, then
her payoff is:

U∗n = µ̄0
n

[
1− µ̄0

n

µ̄0
n

δN
∗−n+2 + ψnwδ − (1− α)N

∗−n+2δN
∗−n+2(ψnwδ − An)

]
.

A sufficient condition for early reneging to be suboptimal for the nth in line is U∗n ≥
Un(m,µ0

n) for all n = 2, . . . , N∗ + 1 and m = 0, . . . , N∗ − n+ 1. Substituting from above,
early reneging is suboptimal if

(A.26)
1− µ̄0

n

µ̄0
n

(δm−δN∗−n+2) ≤ (1−α)mδm(ψnwδ−1)−(1−α)N
∗−n+2δN

∗−n+2(ψnwδ−An)

for all n = 2, . . . , N∗ + 1 and m = 0, . . . , N∗ − n + 1. Substituting the value of An we
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obtain
1− µ̄0

n

µ̄0
n

δm − δN∗−n+2

ψnwδ − 1
≤ (1− α)mδm − δN∗−n+2 (1− α)N

∗+1y1

yn
.

Now substituting from (14), the definition of µ̄0
n, we get the equilibrium condition

1− µ
N∗µ

δm − δN∗−n+2

ψnwδ − 1
≤ ynδ

m(1− α)m − y1(1− α)N
∗+1δN

∗−n+2.

Finally, dividing through by δm(1−α)m+n, writing s = m+n and substituting the expres-
sions from Proposition 3 for y1 and yn gives the sufficient condition for equilibrium:
(A.27)

1− µ
BN∗µ

1− δN∗−s+2

(1− α)s
≤ (ψnwδ − 1)

(
φn−1 − kN∗

(1− α)n
− (1− kN∗)(1− α)N

∗+1−sδN
∗−s+2

)
,

for s = 2, . . . , N∗ + 1 and n = 2, . . . , s.

We now show that for δ sufficiently close to one (A.27) holds. First observe that (A.27)
also holds for n = 1 and s = 1, . . . , N∗ + 1. since, by the construction of the equilibrium
N∗, it is optimal for the first in line to experiment for N∗ + 1 periods and then renege.
There is no social learning for the first in line and the indifference that occurs if q∗ > 0
ensures that there are no estimates, so in this case the expressions are exact.

Now we consider (A.27) for n > 1. The term (φn−1 − k∗N)/(1− α)n in (A.27) increases
in n for α > 1/2 or kN∗ < 0 (α < α∗N).17 This is because

φn − kN∗
(1− α)n+1

− φn−1 − kN∗
(1− α)n

=
α

(1− α)n+1
(φn+1 − k∗N).

When k∗N < 0 and α∗N > α the right-hand-side above is greater than unity. When α > 1/2
the right-hand-side above is increasing in n so is minimised at n = 2. Thus we get

φn − kN∗
(1− α)n+1

− φn−1 − kN∗
(1− α)n

≥
{

1, α < α∗N∗ ;
(φ3 − kN∗)φ−3α−2, α > 1/2.

Hence the first term in n is approximately constant for δ large, by our initial argument,
while the second term strictly increases in n by an amount independent of δ. In combina-
tion, therefore, as n increases the RHS of (A.27) increases in n, for all s. As the inequality
holds for n = 1 it holds for all n > 1 too. Hence we have shown that no later arrival can
benefit from early entry.

Finally, note that this finite set of inequalities hold strictly for the beliefs µ̄0
n. By

Lemma (2), therefore, they hold for the beliefs µ0
n for ν sufficiently small. As ν depends

on the number of states in the Markov process and N∗ increases in δ how small ν must be
depends on δ. �

17This was defined in the proof of Proposition 3.
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B Appendix

Here we describe the solution to the team problem. The first step is to describe the sta-
tionary distribution of queue lengths in the good state when the team adopts the strategy
described in Section 4. This is a simplified version of the calculation in the first Appendix
and yields the distribution:

zn =
1− φ

1− φM†+1

{
φn−1, n = 1, 2, . . . ,M † − 1;

φM
†−1/α, n = M †.

(B.1)

The next step is to describe the team’s time-average utility. By the ergodic theorem, zn
is also the time-average of the number of agents arriving at the queue at the nth position
for n < M †. Such an agent will get utility ψnδw if she waits for service. The average
number of agents arriving at the queue at the M †th position can be found by considering
their history. They must have joined a line of length M †− 1, which occurs with stationary
probability (1−α)zM†−1 +(1−α)αzM† . (This is because an agent can find M †−1 agents in
the line if no service occurred or if one unit of service occurred and the line was previously
length M †). These agents get utility ψM

†
δw. Finally, an agent will balk and get utility

one if she arrives at the queue at the M † + 1st position. This occurs with probability
(1− α)zM† . Hence the time average welfare of the team is

W (M †) :=
M†−1∑
n=1

znψ
nδw + ψM

†
δw(1− α)(zM†−1 + αzM†) + (1− α)zM† .

Substituting for the stationary distribution and evaluating the summations gives

W (M †) =
1− φ

1− φM†+1

[
ψδw

(
1

1− φψ
− φM†ψM† 2− φψ

1− φψ

)
+ φM

†
]
.

A tedious calculation can then be performed to show:

W (M + 1)−W (M) = φM
1− φ

1− φM+1

[
(2− φψ)ψM+1δw − (1− φ)− φW (M + 1)

]
.

The socially optimal value of M † is the smallest value of M for which the above expression
is negative.
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