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Abstract

When workers send applications to vacancies they create a bipartite network.

Coordination frictions arise if workers and firms only observe their own links. We

show that those frictions and the wage mechanism are in general not independent.

Wage mechanisms that give rise to ex ante wage dispersion are ineffi cient in terms

of network formation and only wage mechanisms that allow for ex post competi-

tion generate the maximum matching on a realized network. Finally, we provide
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1 Introduction

When workers apply to one or more jobs, a network arises where each application estab-

lishes a link between a worker and a firm. In such a decentralized environment there are

two coordination frictions, (i) workers do not know where other workers apply to and (ii)

firms do not know which workers are considered by other firms. We can think of the first

coordination friction as referring to random network formation, while the second coor-

dination friction affects network clearing (the number of matches on a given network).

Treating the job search process as a matching on a bipartite graph (network) gives new

insights into one of the key questions in the labor-search literature namely, under which

conditions is the decentralized market outcome constrained effi cient? With constrained

effi ciency we mean that the market outcome is identical to the outcome of a hypothetical

social planner who maximizes social welfare given the fundamental frictions (i) and (ii).

The main contribution of our paper is that it shows how under directed search (workers

observe the posted wages before applying), the wage mechanism affects frictions through

network formation and clearing.1 We find that effi cient network formation requires that

identical vacancies have the same application arrival rate (this implies no ex ante wage

dispersion) and that effi cient network clearing requires ex post competition between firms

that consider the same candidate. The effi ciency condition in Kircher (2009), where

workers send multiple applications and firms can contact all workers, imposes however that

some vacancies should have a higher probability to receive an application than others. The

difference between our effi ciency condition and Kircher’s occurs because he places more

restrictions on the planner’s network clearing mechanism.

Wage mechanisms that allow for ex post competition generate the maximum number

1Coles and Eeckhout (2003) and Eeckhout and Kircher (2010) show that the number of matches

in a model with identical workers is independent of the posted wage mechanism. We show that this

no longer holds if workers send multiple applications. When workers apply to only one job, only the

first coordination friction occurs, since all firms that receive at least one application can be sure that

their selected candidate has no competing offer from another firm, see Burdett, Shi and Wright (2001).

In the random search models of Diamond (1982), Mortensen (1982) and Pissarides (2000) the wage

determination process and the matching process are fully independent. In Moen’s (2000) competitive

search model, workers can sort in submarkets which are characterized by different wage and market

tightness pairs. Within each submarket, given market tightness, the number of matches does not depend

on wages.
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of possible matches on a realized network and are therefore socially effi cient. This happens

because firms can respond to a particular realization of the network by increasing their

posted wages. Specifically, firms that have n candidates who are collectively linked to more

than n firms will bid more aggressively than firms with n candidates who are collectively

linked to less than n firms. Finally, we show how in a decentralized economy, workers and

firms can reach the maximum number of matches through offers and counter offers. The

mechanism only requires the agents to know their own links and not the entire network.

The effi ciency results for network formation and network clearing are for given labor

market tightness and search intensity. At the end we briefly discuss why the decentralized

economy will not be socially effi cient in terms of entry and search intensity. Combining

our and Kircher’s (2009) results, suggests that there may not exist a decentralized wage

mechanism that is effi cient in all dimensions.

Our paper is the first one that analyzes how standard decentralized wage mechanisms

affect network formation and network clearing in a decentralized search model with com-

plete recall where workers only know to which firms they applied and firms only know

which workers applied to them. The only other paper that we are aware of that considers

a search model with multilateral negotiations where workers and firms do not know the

entire network is Elliot (2011). He focuses on the effi ciency of entry and search intensity

and allows for heterogeneity. In his wage mechanism, the bargaining power is assumed to

be independent of the type of subgraph an agent is in, while we show that the type of sub-

graph determines the agents’payoff.2 Manea (2011) considers a framework where agents

who are connected in a network are randomly selected to bargain. During the bargaining

game they are not able to contact other connected agents. His random selection setting

implies that a firm with many candidates has a stronger bargaining position, because it is

more likely to be selected. In our model it is not the number of candidates that matters

but whether a firm is located in a subgraph with more firms than workers.

Part of the network literature has analyzed different pricing mechanisms and has

studied whether these price mechanisms lead to an effi cient matching of sellers and buyers.

2Following Corominas-Bosch (2001) each graph can be decomposed into worker subgraphs with an

excess number of workers, firm subgraphs with an excess number of firms and even subgraphs with an

equal number of workers and firms.
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Kranton and Minehart (2001) show for example that a public ascending price auction

ensures effi cient network clearing. Corominas-Bosch (2004) shows for identical sellers

and buyers that an alternating-offers game where all sellers (or buyers) of a subgraph

simultaneously announce prices, leads to a maximum matching. This literature, however,

assumes that once a network has been formed, all agents know the complete network

(or the entire subgraph of the network they are in).3 This knowledge allows sellers and

buyers to determine their exact outside option (trading partners and trading prices). We

show that ex post competition achieves the maximum matching, even if agents do not

know the network structure. Another part of the network literature uses the set-valued

approach, i.e., it either starts with a set of competitive price vectors and shows that the

resulting matches are pairwise stable and maximize aggregate welfare (see Kranton and

Minehart, 2000), or it starts by assuming that pairwise stable matches must arise and then

analyses wage formation (see Elliott, 2011). Those papers do not layout the game that

leads to a competitive price vector or a pairwise stable matching like we do. Moreover,

pairwise stable matchings are not necessarily maximum matchings (i.e., Kircher, 2009)

but a maximum matching is always stable since an improvement of one agent must make

another agent worse off. Finally, there is a growing number of papers that combine insights

from search and network theory.4 Those papers focus mainly on how social networks of

workers can pass information of the location of jobs on to each other, which is very different

from the bipartite network (between workers and firms) framework that we consider here.

The paper is organized as follows. We start in section 2 with a 3-by-3 example that

illustrates our main point that wage dispersion leads to less effi cient networks and ex post

competition generates a maximum matching on a given network while wage commitment

does not. Sections 3 and 4 consider a large labor market. In section 3 we present a wage

game with multi-round offers and counter offers. Section 4 introduces some insights from

graph theory to derive two important general results. First, in section 4.2 we show that

our wage game that has ex post competition and complete recall gives the maximum

3Galeotti et al. (2010) analyse network games with limited information. However, they only consider

one type of agents, i.e., they do not consider vacancies and workers or sellers and buyers in a bipartite

network.
4Example include, Boorman (1975), Calvó-Armengol and Jackson (2004), Calvó-Armengol and Zenou

(2004), Fontaine (2004).
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matching on a given network and that wage mechanisms without ex-post competition do

not. In section 4.4 we show that in terms of network formation, workers should apply to

each vacancy with equal probability. This only occurs, if all firms post the same wage or

if search is random (workers do not observe the wage ex ante). This implies that the wage

game of section 3 decentralizes the Planner’s solution in terms of network formation and

clearing. Finally section 5 concludes.

2 A simple example

This section illustrates our main points that (i) ex ante wage dispersion leads to less effi -

cient network formation and that (ii) ex post competition generates a maximum matching

in a simple environment with 3 workers, 3 firms and 2 applications per worker.5 Workers

do not know to which firms other workers apply to. First, we look at network formation

and assume that network clearing generates the maximum number of matches. Then, we

look at which wage mechanisms are most effi cient in terms of network clearing. Effi cient

network clearing implies that the number of matches is equal to 3, if each of the three

vacancies receives at least one application, and equal to 2, if only two vacancies receive

applications. Note that these are the only two possible outcomes, since no worker sends

both applications to the same firm. Let ξi be the probability that a worker sends one of

her two applications to vacancy i. Under the assumption that network clearing is effi cient,

the expected number of matches is,

M =

3∑
i=1

(
1− (1− ξi)

3) , with 3∑
i=1

ξi = 2,

where (1− ξi)
3 equals the probability that vacancy i does not get any application. Since

the function
(
1− (1− ξi)

3) is concave in ξi, Jensen’s inequality implies that the number of
matches is maximized, if all vacancies have the same probability to receive an application,

i.e., if ξi = 2/3. Thus, only wage mechanisms that generate no ex ante wage dispersion

(for example, all mechanisms under random search) can lead to the maximum number of

matches, M = 26/9 ≈ 2.889.

5If workers send 1 application or 3 applications, the number of matches generated is independent of

the wage mechanism used.
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Figure 1: Ineffi ciency without ex post competition

Next, consider network clearing. Effi cient network clearing requires that the number

of matches is equal to 3, if all three vacancies are collectively linked to all three workers,

and that the number of matches is equal to 2, if only two vacancies are collectively linked

to all three workers. Network clearing is in general not effi cient, if firms commit to their

posted wages. To see this, consider the graph in Figure 1, which pictures a particular

realization of the case where each worker sends one application to the high-wage firm and

one to one of the two low-wage firms (thick lines).

The number of matches (dashed lines) now depends on which worker is chosen by the

high-wage firm. If the high-wage firm offers the job to one of the workers who are linked

to the low-wage firm with two applicants, i.e., to worker 2 or 3 in Figure 1, the number of

matches is equal to the maximum number of matches (3). If the high-wage firm offers the

job to the worker linked to the low-wage firm with only one applicant, i.e. to worker 1 in

Figure 1, there are only two matches, since the low-wage firm with only one applicant will

remain unmatched. If this firm could ex post increase its initial offer it would bid the high

wage plus epsilon and hire worker 1 while the high-wage firm would hire one of its other

candidates. It is easy to show that in this example, allowing for ex post competition always

leads to the maximum number of matches. This illustrates that the wage mechanism

and the matching process are not independent. Different search environments generate

different distributions of networks and whether the wage mechanism allows for ex post

competition or not affects the number of matches for a given network. A final important

point is that in both cases, the matching is stable. Worker 2 would prefer his match with

the H firm in the ineffi cient M=2 case rather than matching with the L-firm.
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3 A wage game with complete recall and ex-post

competition

Before presenting our main results for a large labor market, we first lay out the precize

setting and the timing of events. Consider v identical firms with one vacancy each and u

identical risk neutral unemployed workers, who can send a ≤ v applications to different

firms. Search is random, i.e., workers send each application with probability 1/v to any

specific vacancy. Workers have a reservation wage of 0 and a matched firm-worker pair

produces 1. We restrict ourselves to symmetric and anonymous strategies. Symmetry im-

plies that workers cannot coordinate in where to send their applications while anonymity

implies that firms must treat identical workers similarly and vice versa (see Burdett, Shi

and Wright, 2001). Finally, we take the number of applications that workers send out

and market tightness as given. The main reason for this is that the conditions for effi cient

entry and the number of applications are well known and have been studied before.6 This

allows us to focus on the effi ciency of random network formation and network clearing.

However, at the end we will make some remarks on the effi ciency of entry and search

intensity.

3.1 Network clearing (assignment game)

We start with the network-clearing or assignment game. The realized network that is

formed by the random application process is unknown to workers and firms. The following

timing of the assignment game also describes the action and information sets of workers

and firms:

1. Each firm selects one worker (if present) and offers that worker a wage w ≥ 0. Wage

offers are discrete w ∈ {∆, 2∆, ..., 1−∆, 1}, where∆ is a small but discrete amount,

i.e., a cent.

6Gautier and Moraga-Gonzalez (2005) and Albrecht et al. (2006) find without recall, that workers

send too many applications (due to rent seeking and congestion externalities) and that entry is excessive,

because firms have too much market power. Kircher (2009) shows that with directed search, wage

commitment and full recall, entry and search intensity are socially effi cient. Elliot (2011) finds that firm

entry is never excessive but can be too small and that workers send too many applications.
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2. A worker with one or more offers can keep at most one offer (which is observed and

verifiable by all linked firms) and must reject all others. The worker and the only

not rejected firm are labeled to be engaged.

3. The firms that are rejected select a worker (possibly the same worker) and offer that

worker a wage w ≥ 0 given the wage offers from other firms that are kept by their

applicants.

4. The engaged firms can make a counter offer.

5. A worker with one or more offers can keep at most one offer (observed by all linked

firms) and must reject all others.

6. Return to stage 3)... until the final round T (suffi ciently large).

We assume the following tie breaking rule for workers. Workers keep the offer of the

engaged firm if it offers the same wage as the highest offer made by any other firm. If the

worker was not engaged and two or more outside firms offer the same highest wage, the

worker randomly picks one of them and rejects the others.

The network clearing game assumes that firms have all the bargaining power and can

make take-it-or-leave-it wage offers. An interesting alternative is the case where workers

have all the bargaining power. Kim and Kircher (2012) show that from a welfare point

of view this is more desirable. In that case, the network clearing game is the same as

above except that we have to exchange the roles of firms and workers (workers now make

a take-it-or leave-it offer, w ≤ 1).

3.2 Network decomposition

In order to determine the optimal strategies for workers and firms we use the properties of

the Decomposition Theorem by Corominas-Bosch (2004) (for details see Appendix B.1),

which —in terms of our terminology —decomposes a realized network into firm-, worker-

and even subgraphs. A firm subgraph contains more firms than workers. A worker

subgraph contains more workers than firms. In even subgraphs, the number of workers

equals the number of firms (see Figure 2).The algorithm first looks for firm subgraphs
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and separates all of them from the network. Then it identifies worker subgraphs and

removes all of them from the network. The remaining subgraphs are even subgraphs.

The decomposition is not unique but the Decomposition Theorem states that any firm

and any worker will always belong to the same type of subgraph, a property important

to guarantee that the different possible decompositions are payoff equivalent.

Figure 2 illustrates the Decomposition Theorem. The algorithm starts with the first

firm and identifies a set of firms as firm subgraph if it has less neighbors (more precisely,

if it is jointly linked to less neighbors, i.e., |F | > |N (F )|). In order to ensure that the
maximum matching is found, the algorithm has to start with |F | = 1. The number |F |
increases by one once all firm combinations with |F | have been considered (Hall’s Theorem,
1935). The first subgraph in Figure 2 is the unmatched firm G. The firm subgraph Gf1 is

removed before the algorithm continues. Since there are no firm subgraphs with |F | = 2,

the next firm subgraph has three firms, i.e., |F | = 3, The three firms A, B and C in

this subgraph are collectively linked to workers 1 and 2, i.e., N ({A,B,C}) = {1, 2} and
|N ({A,B,C})| = 2. Once the firm-subgraph Gf2 is removed, it is easy to identify that

the remaining sets of firms are collectively linked to more neighbors, i.e., |F | ≤ |N (F )|.
Hence, there are no further firm subgraphs. The algorithm continues by looking for worker

subgraphs in the same way as it looked for firm subgraphs. At |W | = 4, the algorithm

identifies a worker subgraph with N ({3, 4, 5, 6}) = {D,E, F} and |N ({3, 4, 5, 6})| = 3.

Once the worker subgraph Gw1 is removed, and no further worker subgraphs are found

the algorithm stops by identifying all remaining subgraphs as even subgraphs, i.e., in

Figure 2 the remaining subgraph Ge1 is an even subgraph with N ({7, 8}) = {H, I} and
|N ({7, 8})| = 2 = |{H, I}|.

1 2 3 4 5 6 7 8

A B C G H ID E F
firms

workers
Figure 2 illustrates an important property of the resulting subgraphs. The long side of

a subgraph has only links to the short side of the respective subgraph, i.e., the workers in

a worker-subgraph, Gwi (firms in a firm-subgraph, G
f
i ) are only linked to firms (workers)
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1 2 3 4 5 6 7 8

A B C G H ID E F

G2
f G1

fG1
w G1

e

Figure 2: Graph-Decomposition

in a worker (firm) subgraph. Workers in an even subgraph, Gei , are only linked to firms in

worker- or even subgraphs and the firms in even subgraphs can only be linked to workers

in firm- or even subgraphs.

3.3 Information sets and beliefs

The actions of firms (or more general, the agents who have the power to propose the wage)

will depend on their belief about the subgraph they are in. Firms will update their beliefs

given the number of applicants N they have and the wage offers of their applicants, i.e.,

the set of wage offers WN the applicants hold from their engaged firms. Denote the belief

of firm j in round t that it is in a firm-subgraph given N andWN , by bj,t
(
N,WN

)
. I.e., if

a firm is sure to be in a firm subgraph bj,t
(
N,WN

)
= 1. Firms without any applicant are

by definition in a firm-subgraph (see Gf1 in Figure 2). Firms with at least one applicant

can be in any type of subgraph.

Let us have a closer look at the information set of firms. We will show below that

firms can infer from the (sub)sets of observed wage offers WN whether they are in a

firm-subgraph or not. Let us therefore define the following subsets. If k ∈ {0, 1, ..., n}
applicants receive no offer, denote the respective subset of wage offers by Øk. If l ∈
{0, 1, ..., n} applicants hold wage offers equal to zero, denote the respective subset by
0l. If m ∈ {0, 1, ..., n} applicants hold an offer equal to one cent, denote the respec-
tive subset by ∆m. Finally, if q ∈ {0, 1, ..., n} applicants hold an offer equal to one,
denote the respective subset by 1q. Thus, the set of wage offers is equal to WN ={
W̃N−k−l−m−n,Øk, 0l,∆m, 1q

}
, where W̃N−k−l−m−q equals the remaining subset of wage

offers with wagesw ∈ {2∆, 3∆, ..., 1−∆}. We show below that in equilibrium W̃N−k−l−m−n
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is empty in the final round given that T is suffi ciently large.

3.4 Workers’and firms’strategies

Below, we prove that the following set of strategies constitutes a perfect Bayesian Nash

equilibrium to the assignment game.

Consider the following worker strategies:

A1 In the final round T , accept the best offer.

A2 In any previous round t < T , keep the best offer wh = max {w1, w2, ..., wa}, and
reject all other offers. Accept the best offer, if wh = 1.

Engaged firms have one advantage over rejected firms. They can make a counter offer

before the next round starts. This implies that they can base their actions on the set

of wage offers, WN , they observe and do not need to base their actions on the beliefs

about the type of subgraph they are in. We therefore consider the following counter offer

strategies for engaged firms:

B1 In the final round T , match any offer.

B2 In any previous round t < T , match any outside offer wh = 0. Match the offer

wh ≥ ∆, if all other applicants hold an offer w̃h ≥ wh − ∆, and don’t match the

offer wh ≥ ∆, if at least one other applicant holds no offer or an offer w̃h < wh−∆.

For rejected firms in rounds t < T we consider strategies that are independent of the

firm’s belief bj,t
(
N,WN

)
and only in the final round T we consider strategies that depend

on the belief bj,T
(
N,WN

)
. The reason is that in any round t < T rejected firms have the

option to increase their offer in the next round.

C1 In the final round T , the strategy is as follows:

C1a If at least one applicant holds no offer, i.e.,WN =
{
WN−k−l−m−q,Øk, 0l,∆m, 1q

}
with k > 0, then offer one of the k applicants w = 0 if bj,T

(
N,WN

)
= 0, else of-

fer one applicant w ∈ F (w) if bj,T
(
N,WN

)
6= 0, where the optimal wage offer
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distribution F (w) is characterized in Gautier and Moraga-Gonzalez (2004).

(Note, that we show below that for T suffi ciently large bj,T
(
N,WN

)
= 0 if

k > 0.)

C1b If all applicants hold an offer, select one worker and offer him w = 1 (irrespec-

tive of bj,T
(
N,WN

)
).

C2 In any previous round t < T , the strategy is as follows:

C2a If at least one applicant holds no offer, i.e.,WN =
{
WN−k−l−m−q,Øk, 0l,∆m, 1q

}
with k > 0, offer one of the k applicants w = 0 irrespective of the belief

bj,t
(
N,WN

)
.

C2b If all applicants hold an offer wh ≥ 0, i.e.,WN =
{
WN−k−l−m−q,Øk, 0l,∆m, 1q

}
with k = 0, offer the worker with the lowest best offer wh = minWN the wage

w = wh + ∆ if wh < 1 irrespective of the belief bj,t
(
N,WN

)
and w = 1 if

wh = 1.

3.5 Wages and beliefs

In order to show that the proposed strategies are indeed optimal it will be useful to

analyze first the wages that are paid in each type of subgraph.

Lemma 1 Workers’and firms’strategies imply that

(i) at t ≥ u all firms in worker subgraphs are engaged and their engaged workers hold an

offer no higher than w = 0,

(ii) at t ≥ 2u all workers and firms in even subgraphs are engaged and all workers hold

an offer w ∈ {0,∆},
(iii) at t ≥ u/∆ all workers in firm subgraphs are engaged and hold an offer w = 1.

Proof. See Appendix A.1. Lemma 1 shows that after t ≥ u/∆ rounds have passed, all

workers in firm subgraphs will have received an offer wh = 1 and have accepted it such

that all other firms that are not part of a firm subgraph can infer from the absence of

wage offers wh = 1, i.e., from q = 0 at t ≥ u/∆, that they are not in a firm subgraph.

This is stated in part (ii) in the following Lemma.
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Lemma 2 (i) Rejected firms that observe that their applicants hold wage offers WN ={
WN−m−n,∆m, 1n

}
with k = l = 0 in round t ≥ 2u hold a belief

bj,t
(
N,
{
WN−m−n,∆m, 1n

})
= 1.

(ii) At t = u/∆ all firms that observe WN =
{
Øk, 0N−k−m,∆m

}
hold a belief

bj,u/∆

(
N,

{
Øk, 0N−k−m, ∆m

})
= 0.

Proof. See Appendix A.2

For other values of WN{·} beliefs can be between 0 and 1. However, actions only

depend on beliefs in the final round so we do not care about them.

3.6 Equilibrium of the assignment game

Proposition 1 The strategy profile A1-A2, B1-B2 and C1a-C2b constitute a perfect

Bayesian Nash equilibrium to the assignment game.

Proof. See Appendix A.3

We show that for workers it is optimal to always keep the best offer (since it may

not be available in later rounds). The option for engaged firms to make counter offers is

crucial to rule out strategic behavior in order to manipulate beliefs. Suppose for example

there are 3 firms (A,B,C) in a firm graph with 2 workers (1,2) who applied to all three

firms. Suppose only firm A has learnt that it is in a firm graph. B and C will continue

to believe they are in an even graph and offer w = 0 to workers 1 and 2 as long as their

workers do not show better offers. Why is it then not in the interest of firm A to make no

offer till T − 1 and then offer ∆ in round T? This is not profitable because in that case

B or C will match this offer as long as firm A offers less than 1. If A would offer 1 in the

last round it may as well immediately make an offer ∆ in the second round.

4 General results on random network formation and

network clearing

The example of section 2 suggests that ex ante wage dispersion is ineffi cient in terms of

random network formation and that we need ex post competition in order to get effi cient
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network clearing. In this section we use some results from (random) graph theory to

show that those results hold in general. In section 4.2 we show that maximum matching

requires ex post competition and in section 4.4 we show that all firms post a wage equal

to the reservation wage, which leads to effi cient network formation by ensuring that all

vacancies have the same application arrival rate.

4.1 Berge’s Theorem

We first briefly describe some basic concepts of graph theory that are relevant for our

environment. When workers apply to jobs, each of their applications is a link (or edge) in

a bipartite network (or graph). The wage mechanism and search environment determine

both the distribution of networks that can arise and the matching on a given network.

The networks (or graphs) in our environment are simple (workers do not send multiple

applications to the same firm), undirected (if worker i is linked to firm j, then firm j is

linked to worker i) and bipartite (G = 〈u ∪ v, L〉 consists of a set of nodes formed by two
different kind of agents, i.e., by workers and vacancies, and a set of links L where each

link connects a worker to a firm, so workers are not linked to other workers and firms are

not linked to other firms).

Definition 1 A matching M in a graph G is a set of links such that every node of G is

in at most one link of M .

Central to our result that a maximum matching requires ex-post competition is the

following theorem by Berge.

Berge’s Theorem (1957):

A matching M in a graph G is a maximum matching if and only if G contains no M-

augmenting path.

In our bipartite graph environment an M -augmenting path is defined as a path where

1. worker-firm links that are part of the matching M alternate with worker-firm links

that are not part of the matching M (definition of an M -alternating path) and
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2. neither the origin (firm or worker) nor the terminus (worker or firm) of the path is

part of the matching M .

Figure 3 depicts an M -alternating path and an M -augmenting path in a particular

network. The dots represent vacancies and the squares unemployed workers. The solid

lines represent applications (a = 2) and the dashed lines represent matched worker-firm

pairs. The M -alternating path in the first panel (A − 1 − B − 2 − C − 4) starts with

the matched vacancy A and ends at the matched worker 4. The M -augmenting path

(A−1−B−2−C−4) in the second panel of Figure 3 starts with an unmatched vacancy,

A, and ends with an unmatched worker, 4.

Malternating path Maugmenting path

1 2 3 4 1 2 3 4

A B C A B C

Figure 3: M -alternating path and M -augmenting path

Berge’s Theorem, translated to our setting, implies that a maximum matching in a

graph is only guaranteed, if an unmatched firm is not linked to an unmatched worker via

an M -augmenting path. The reason that a matching is not optimal, if an M -augmenting

path exists, is that one could create one more match by switching the links. Then, the un-

matched firm at the start of theM -augmenting path and the unmatched worker at the end

of theM -augmenting path will both be matched at the expense of one match in the middle.

Comparing the two paths in the second panel of Figure 3 illustrates this. The matching

M = {1−B, 2− C} in an M -augmenting path can always be increased by switching the
dashed and solid links resulting in an extra link, i.e., M = {A− 1, B − 2, C − 4}.
What remains to be shown is that if a matching M has no M -augmenting paths, it is

a maximum matching. This can be proven by contradiction. Suppose that in a particular

graph in our setting there is a matching M for which there are no M -augmenting paths

but that (contrary to Berge’s Theorem) this matching is not a maximum matching. Then
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there is a matching N (i.e. A − 1, B − 2, C − 4; dashed lines in Figure 4) with more

links than M (i.e. 1 − B, 2 − C; dotted lines in Figure 4), |N | > |M |. Now consider the
symmetric difference N∆M defined as the set of links that is either in N orM but not in

both (the sum of dashed and dotted lines in Figure 4, A− 1, B− 2, C − 4, 1−B, 2−C).
Each worker or firm can have at most 2 links in N∆M because he is hired by at most one

firm in M and at most one firm in N . Moreover, the links of the paths alternate between

being in M and being in N , because by the definition of a matching, no node can have

two links in M or two links in N . Since by assumption N is strictly bigger than M there

must be at least one path in N∆M with an odd number of links that starts with a firm

(worker) in N and ends with a worker (firm) in N (i.e., A − 1 − B − 2 − C − 4). But

then this is an M -augmenting path because the firm and worker at the start and end of

the path are (by the symmetric difference operation) not in M . This gives us the desired

contradiction, because we started by assuming that M has no M -augmenting paths.

Thus, in order to show that ex-post competition leads to a maximum matching we

need to rule out that an M -augmenting path exists.

4.2 Maximum matching requires ex post competition

In this section we show that for a given network, ex post competition with complete recall

generates a maximum matching.

1 2 3 4

A B C

Figure 4: Symmetric difference operation (N∆M)
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4.3 The ex-post competition game gives a maximum matching

Next, we prove in four simple steps that the network-clearing subgame generates a maxi-

mummatching on any given network. Let x be the smallest monetary unit, i.e. a matching

offer must be an amount x higher than the previous one.

Lemma 3 If a firm remains unmatched after T rounds, then all workers along an M-

alternating path that starts with the unmatched firm must earn a wage equal to the marginal

product, i.e., w = 1.

Proof: To see why all workers along the M -alternating path receive w = 1, first note

that if a firm with candidates (firm A) remains unmatched after T rounds, then all its

applicants must have accepted a wage w = 1 (since if at least one of its candidates would

earn w < 1, firm A would have offered that worker w < 1 and make positive profits). But

then the other candidate of the next firm along theM -alternating path (firm B) that hired

A’s candidate must also receive w = 1 otherwise firm B would have hired that worker at

a w < 1. Repeating this argument implies that all firms along the M -alternating path

pay a wage of 1. �

Lemma 3 implies that all workers inM -alternating paths that start with an unmatched

firm have been offered a wage equal to 1 and have left the market after T − 1 rounds.

Lemma 4 If a worker remains unmatched after T rounds, each firm along anM-alternating

path that starts with the unmatched worker pays no more than the highest posted wage.

Proof: The firm (firm A) to which the unmatched worker (worker 1) applied will offer the

worker who it hired (worker 2) at most its posted wage otherwise it could have offered the

job to the unmatched worker 1. But then the worker (worker 3) who is hired by the next

firm along the M -alternating path (firm B) must also earn weakly less than the highest

posted wage, else his firm (B) would have hired worker 2. Repeating this argument implies

that all firms along the M -alternating path that starts with an unmatched worker pay a

wage less than the highest posted wage. �

Lemma 4 implies that all workers inM -alternating paths that start with an unmatched

worker have been offered a wage no higher than the highest posted wage after T−1 rounds.
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Lemma 3 above shows that this holds for all M -alternating paths that do not start with

an unmatched firm. It follows that all workers who requested a wage above the highest

posted wage have left the market after T − 1 rounds.

Lemma 5 The highest posted wage is strictly smaller than 1.

Proof: Under directed search, any firm that offers a wage equal to 1 makes no profit and

could increase its profits by offering a wage strictly less than one since there is a positive

probability that one of its candidates receives no better offers and accepts this lower offer

in round T . �
According to Berge’s Theorem a maximum matching exists if and only if there is no

M -alternating path that starts with an unmatched worker and ends with an unmatched

firm, i.e., if and only if there is no M -augmented path. Given the wage pattern in an M -

alternating path that starts with an unmatched worker (Lemma 2) or with an unmatched

firm (Lemma 3), we can write down our main Proposition.

Proposition 2 Ex-post competition leads to a maximum matching in any realized net-

work.

Proof: Suppose it would not lead to a maximum matching. In that case there would

exist an M -augmenting path with at least one unmatched worker and one unmatched

firm. But then Lemma 1, 2 and 3 imply that all firms along the M -augmenting path

(that is also an M -alternating path) offer both a wage less than 1 and a wage equal to 1,

which is a contradiction. �

Note that this result is very general. If firms can only interview a subset of their

workers as in Wolthoff (2011) or one as in Albrecht et al. (2006) and Galenianos and

Kircher (2009), the realized network will be different but Proposition 2 still holds. The

same is true, if workers have for example different search costs and consequently send

out different numbers of applications. Also, if firms can create shortlists of at most n

candidates, our result holds. This just requires an intermediate step where all firms

with more than n candidates must eliminate (at random) a number of links. After this

intermediate step, a new network arises for which the same results on maximum matching

hold as above.

17



The flexibility to adjust wages ex post is central to achieve effi ciency in network clear-

ing. If firms commit to their posted wages and do not adjust their wages ex post, we can

typically observe different wages along an M -alternating path. If both end nodes of the

M -alternating path are unmatched, i.e., if we have an M -augmenting path, there is no

mechanism inherent in the matching process associated with wage commitment that can

induce the matched firm-worker pairs to rematch with the unmatched firm and worker at

the end of the M -augmenting path. Thus, the ineffi cient network clearing result of wage

commitment from the 3 by 3 example of section 2 holds in general. Therefore, Berge’s

Theorem also implies the following Corollary,

Corollary 1 If firms commit not to increase their posted wages ex-post, network clearing

is generally ineffi cient and the maximum matching is not realized.

Corollary 1 shows that directed search models with fixed posted wages are not able to

solve the second coordination friction (firms do not know which workers are considered

by other firms). Thus, although directed search with fixed posted wages is constraint

effi cient in terms of firm entry and number of applications that workers send, see Kircher

(2009), it generally does not generate the maximum matching that is possible given the

network that is formed between firms and their applicants.

Proposition 2 also implies that a social planner would never want to give one subgroup

of firms the right to match first. Such a property arises, if some firms offer higher wages

than others and wages cannot be raised ex-post as in Kircher (2009).

Corollary 2 It is socially ineffi cient to have a subgroup of firms that matches first.

Corollary 2 implies that it is socially ineffi cient to have a subgroup of high wage firms

that match first and a subgroup of low wage firms that match only if their candidate(s)

receive no offers at a high wage firm.7

4.4 Effi cient network formation given effi cient network clearing

In our setting, network formation is random. The symmetry and anonymity assumptions

do not allow workers to identify certain firms and to condition their application decision
7Note, that Kircher’s (2009) equilibrium is constrained effi cient because the planner takes the existence

of a subset of firms that match first as given, whereas here this is not part of the planner’s constraint.
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on firms’names. Workers do observe the posted wage, and can condition their application

decision on that.

The game of section 3 implies an urn-ball model of network formation, (see Albrecht,

Gautier and Vroman, 2004) where workers randomly send out a applications to different

firms.8 Each application can be thought of as creating a link in a bipartite graph. This

process differs from the seminal Erdös and Rényi (1960) random network formation model

where each link is formed with a certain probability and the number of applications that a

worker sends is a random variable.9 In our framework the number of applications that each

worker sends is given and the randomness comes from the fact that workers do not know

where other workers apply. The number of applications that a firm receives is therefore

a random variable. Under directed search, the expected number of applications a firm

receives will of course depend on the wage (or more generally on the wage mechanism) it

posts. If we make the labor market large by letting N be an arbitrary large finite number

and v → N with v/u = θ, the number of applications are approximately distributed

according to a Poisson distribution with mean a/θ.

4.4.1 Social planner’s problem

An unconstrained social planner will trivially assign each unemployed worker to a vacancy

such that the number of matches equals the short side of the market. If workers send out

multiple applications, the same first best assignment can be achieved, if the social planner

partitions the labor market into submarkets where the number of firms and workers in

each submarket is no higher than the number of applications. However, if the social

planner faces the same coordination frictions as the market, he must assign symmetric

strategies to identical workers, implying that he can only decide on the probability with

which a worker has to send an application to a subgroup of firms.

We constrain the social planner to choose the set of firm subgroups C (where each

subgroup c is defined by a certain color), the measure of vacancies vc within each subgroup

c and the probability pc,i that a worker sends its i-th application to subgroup c ∈ C. The
8See also Kircher (2009) and Galeanos and Kircher (2009) and Fontaine (2004).
9See Bollobas (2001) for a bipartite version.
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expected number of applications sent to subgroup c is equal to

ac = u
∑a

i=1
pc,i.

The total number of workers that apply to subgroup c equals uc = (1−
∏a
i=1 (1− pc,i))u,

where
∏a
i=1 (1− pc,i) is equal to the probability that a given unemployed worker does not

send any application to subgroup c. While vacancies can by definition only be part of

one subgroup, workers can be linked to at most a different subgroups depending on where

they send their applications to. Workers are, however, only part of one subgraph (worker,

firm or even). Subgraphs can, therefore, contain vacancies of different subgroups, if the

workers that belong to that subgraph are linked to vacancies in different subgroups.

�

In a companion paper Gautier and Holzner (2012), we show that all vacancies should

have the same probability to be contacted by a worker. This makes the network as

balanced as possible and therefore minimizes the fraction of firms that are not matched.

Shimer (2005) derives a similar condition for a directed search environment where workers

can apply to only one firm. In the setting by Galenianos and Kircher (2009), where

workers can send more than one application but firms can contact only one worker, the

total number of matches is also maximized, if all firms have the same probability to be

contacted by a worker. In contrast, the effi ciency condition in Kircher (2009), where

workers send multiple applications and firms can contact all workers, differs from our

effi ciency condition, because he constrains the social planner to let a subgroup of firms

always match first (i.e., be in a high location). Those firms in a high location should be

more likely to be contacted by a worker, since this reduces the probability that a worker

is not available for hiring at a firm in a low location (where firms can only match, if

their candidates do not have an offer from a firm in a high location). Allowing the social

planner to also choose the network clearing mechanism, Corollary 2 shows that it is not

optimal to let a subgroup of firms match first. Thus, Kircher’s (2009) effi ciency result

differs from our effi ciency result, because he restricts the social planner to use a network

clearing mechanism that does not allow for ex post competition.

The fact that under random search, all firms post the same initial wage establishes

our main result that our decentralized game is effi cient in terms of network formation and
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clearing. The first coordination friction that workers do not know where other workers

apply is minimized in the decentralized economy because workers fully randomize.10 In

addition, ex post competition generates the maximum matching. It therefore eliminates

the second coordination friction between firms, i.e., the friction that firms do not know

which other workers are considered by other firms.

Finally, we can show that wage mechanisms that generate ex ante wage dispersion like

Kircher (2009) are not effi cient in terms of network formation.

Corollary 3 If equally productive firms post different wages, network formation is not

effi cient.

Proof. See Appendix A.4.

The intuition is simple. Wage dispersion implies that a subset of firms have a higher

expected arrival rate of applicants. This creates unbalanced networks and leads to ineffi -

cient network formation.

5 Final remarks

This paper contributes to one of the fundamental question in economics namely under

which conditions do decentralized markets generate constraint effi cient outcomes. Our

focus is on the labor market where it is common that unemployed workers simultaneously

send multiple applications. This creates a bipartite network between workers and firms.

In such an environment there are two coordination frictions, (i) workers do not know

where other workers apply to and (ii) firms do not know which workers are considered

by other firms. We show that the second coordination friction between firms can be

eliminated if wages in the decentralized market are determined by ex post competition

and if firms can go back and forth between their applicants. In that case, the number of

matches on a given network equals the maximum number of possible matches. The first

coordination friction is minimized if the decentralized market ensures that workers apply

to each vacancy with equal probability. This implies that an equilibrium with ex ante wage

10It is hard to derive the directed search equilibrium of this game but it may very well be possible that

all firms post the same wage in that case.
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dispersion is ineffi cient in terms of network formation. We show that in a directed search

equilibrium with complete recall, all firms post a wage equal to the reservation wage,

which implies that the decentralized market equilibrium is equal to the social planner’s

solution.

An interesting question is what happens if firms can commit to richer contracts, do

we get a maximum matching in that case? We believe that this requires that firms must

be able to post wages conditional on each possible network realization. Given the huge

number of possibilities, this is impossible in practice.

Although our wage mechanism is effi cient in terms of network formation and network

clearing, it may not be effi cient in other dimensions like vacancy creation and search

intensity. Kircher (2009) shows for example that wage commitment without ex post com-

petition implies wage dispersion and that the resulting equilibrium is effi cient in terms

of search intensity and firm entry. Combining those results suggests that there may not

exist a simple wage mechanism that by itself generates the constrained effi cient outcome

along all dimensions. It is unlikely that workers send the socially desirable number of

applications because there are many externalities. For example, since workers’payoffs are

independent of whether they are in a worker or even subgraph, they do not take into ac-

count that an additional application might turn a worker subgraph into an even subgraph

and thereby generate an additional match. There is also a rent seeking externality caused

by the fact that an additional application can increase the chances of turning an even

subgraph into a firm subgraph, which then implies that the surplus goes to the workers

and no longer to firms. The probabilities that these events occur and consequently the

expected payoffs will depend on market tightness and the aggregate search intensity. De-

pending on which one is more likely, workers either send too many or too few applications.

Kim and Kircher (2012) show that those externalities disappear if workers awarded the

worker-payoff-maximizing point in the core. Finally, firms fail to take into account that

when they enter they also destroy the expected payoffs of other firms by making it more

likely that these firms end up in firm subgraphs.11 It is not clear whether the Kim-Kircher

11Consider for example the case where there are 10 unemployed workers sending out 10 applications to

10 vacancies. The social contribution of an additional firm is zero but the private contribution is positive,

because there is a positive probability that the entrant ends up in an even subgraph.
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(2012) mechanism internalizes this because they do not allow for multiple applications.

We plan to investigate this in future work.

Another important and interesting extension for future research is to allow for hetero-

geneity in firm and or worker types, see Shimer (2005) and Elliot (2011). We conjecture

that this makes ex post competition equally desirable as in a homogenous firm world, be-

cause high productive firms should be able to outbid low productive firms. Furthermore,

this will make directed search more desirable than in our setting because high productive

firms should be able to signal their types in order to get matched with a higher proba-

bility. Finally, it would be interesting to consider limited interview capacity. We expect

that our main results still hold if firms can interview at most n workers. In the network

formation process this makes it less attractive to offer high wages. Since we already find

that with full recall, posted wages equal the reservation wage, we expect our results to

hold there as well.
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6 Appendix

A Proofs

A.1 Proof of Lemma 1
Consider part (i). We prove the engagement result of (i) by contradiction. Denote the
highest number of applicants that a firm in a worker subgraph has by Nw ≤ u. Note, that
all applicants of firms in a worker subgraph are in the same subgraph, since workers in a
worker subgraph cannot be linked to a firm in an even or firm subgraph. Suppose firm
j is part of a worker subgraph and it is not engaged in t = Nw. In t = Nw, according
to strategy C2a, firm j must have offered the job to all its applicants and must have
been rejected by all its applicants. Thus, all workers that are linked to firm j must be
engaged with some other firm in the same worker subgraph, since workers always keep
their best offer wh according to strategy A2 and since workers in a worker subgraph are
only linked to firms in the same worker subgraph. This leads to the desired contradiction,
since the number of engaged workers cannot exceed the number of engaged firms in a
worker subgraph.
Now consider the wage result of (i). In round t = 1 all firms start with the lowest

possible offer, i.e., w = 0. According to the engagement result of part (i) all firms in a
worker subgraph are engaged in round t = u < T . The counter offer strategy B2 rules
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out that an engaged firm will offer a wage w ≥ ∆ if the wage offered by the competing
firm is no higher than w = 0. Thus, if we can rule out that a rejected firm in a worker
subgraph offers w ≥ ∆ at any t < T , we have proven that the engaged workers of firms in
worker subgraphs hold an offer no higher than w = 0 in any round t < T . The strategy
C2b implies that a rejected firm only offers w ≥ ∆ in a round t < T if k = 0. Since there
are more workers than firms in a worker subgraph and since all workers are collectively
linked to all firms in the subgraph, there is always at least one applicant without an offer,
i.e., k > 0. Thus, the wage offers in a worker subgraph implied by the above strategies
are no higher than w = 0 in any round t < T .
Consider now part (ii). We use a contradition argument to rule out that firms in

even subgraphs offer a wage w = 2∆. According to strategy C2b, a rejected firm only
offers w = 2∆ if all its applicants are engaged and hold an offer w = ∆. If all applicants
of a rejected firm in an even subgraph are engaged, it must be the case that at least
one of the applicants is engaged with a firm outside the even subgraph, because a firm
in an even subgraph cannot be rejected, if all workers in even subgraphs are engaged
with firms in even subgraphs. The Decomposition Theorem of Corominas-Bosch (2004)
implies that workers in an even subgraph are either linked to firms in an even or to firms
in a worker subgraphs. Thus, the applicant that is engaged with a firm outside the even
subgraph must be engaged with a firm in a worker subgraph. This leads to the desired
contradiction, since part (i) of the Lemma implies that the wage offers made by firms in
worker subgraphs cannot be higher than w = 0. Thus, the rejected firm will according to
strategy C2b never offer a wage w = 2∆ or higher. This implies that wages paid in even
subgraphs are no higher than w = ∆. According to strategy A2, since workers keep their
best offers, it follows that any firm that offers w = ∆ must be engaged. Since all firms
start in round t = 1 with the lowest possible offer, i.e., w = 0, and since there are at most
u workers linked to firms in even subgraphs, it takes at most t = 2u rounds of rejections
(where the wage offers w = 0 are rejected) until a firm offers for the first time the wage
w = ∆ and becomes engaged.
Now consider the engagement result of (iii). Denote the number of workers in a firm

subgraph by uf ≤ u. Note, that all vf firms in the respective firm subgraph are only
linked to their respective uf applicants in the same firm subgraph. Thus, since there are
more firms than workers in a firm subgraph, i.e., vf > uf , at least one firm must always
be rejected in any round. Strategy C2a implies that the rejected firms first choose one of
the k applicants without an offer (if present) and offer her a wage w = 0. Thus, it takes
at most t = uf rounds until all workers in a firm subgraph are engaged.
Now consider the wage result of (iii). The engagement result of part (iii) implies that

all workers are engaged in round t = uf , i.e., k = 0, and at least one firm is rejected. The
rejected firm will according to strategy C2b choose one of the applicants with the lowest
best offer, i.e., wh = minWN , and offer this applicant one cent more, i.e., w = wh + ∆ if
wh < 1. If the offer w = wh + ∆ does not attract a worker, i.e., the rejected firm does
not become engaged (which can happen, if the already engaged firm matches the offer
according to strategy B2), the firm can offer w = wh + ∆ to other (potential) applicants
that hold an offer wh. After at most uf rounds all applicants will hold an offer wh + ∆
and the firm will either be engaged or still remain rejected. Since there is at least one
rejected firm each round, wages will increase by ∆ after at least uf rounds, i.e., after all
workers experienced wage increases by ∆. By induction firms will increase their offers
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according to strategy C2b up to w = 1. Thus, there exists a round t ≤ u/∆, in which all
workers in a firm subgraph hold an offer wh = 1, which they accept. �
The fact that wages differ across subgraphs enables firms to update their belief on

whether they are in a firm subgraph or not. If firms have no applicant, i.e., N = 0, they
are part of a firm subgraph by definition, i.e., bj,0 (0, .) = 1. Firms with at least one
applicant, i.e., N > 0, start with a belief bj,0

(
N,WN

)
∈ (0, 1) that is equal to the ex-ante

probability to be in a firm subgraph given N . �

A.2 Proof of Lemma 2
(i) Lemma 1 implies that only firms in firm and even subgraphs observe wage offers wh ≥

∆ in rounds t ≥ 2u. Furthermore, at least one firm in each firm subgraph that observes
wh ≥ ∆ is rejected. These rejected firms form the belief bj,t

(
N,
{
WN−m−n, ∆m, 1n

})
= 1

in any round t ≥ 2u, because parts (i) and (ii) of Lemma 1 imply that they would not
have been rejected if they were in an worker- or even subgraph.
(ii) In round t = u/∆ all workers in firm subgraphs will have accepted a wage offer

w = 1. Thus, at t = u/∆ all firms that are not in firm subgraphs, i.e., observe WN ={
Øk, 0N−k−m,∆m

}
, can infer that they are either in a worker- or even subgraph, i.e.,

bj,T

(
N,
{
Øk, 0N−k−m,∆m

})
= 0. �

From Lemma 1 we know that T = u/∆ is suffi ciently high to ensure that firms can
infer whether or not they are in a firm subgraph. We therefore set T = u/∆.

A.3 Proof of Proposition 1
Consider first the strategies in round T .
Clearly, the workers’ strategy A1 to accept the best offer in t = T maximizes the

workers’payoff.
Also, the engaged firms’strategy B1 of matching the outside offer in round t = T is

profit maximizing, since engaged firms that do not match outside offers would remain idle
and earn a profit of zero.
Let us now turn to the strategies C1a and C1b of rejected firms. If there are some

applicants without an offer, i.e., k > 0, and if the belief that there are other competing
firms is equal to zero, i.e., bj,T

(
N,
{
Øk, 0N−k−m,∆m

})
= 0 at t = T , then the action

implied by strategy C1a, i.e., the firm should offer a wage w = 0 to one of the applicants
without an offer, is profit maximizing. This follows from bj,T

(
N,
{
Øk, 0N−k−m,∆m

})
=

0, i.e., from the fact that the rejected firm believes that all other firms in the same
worker or even subgraph are according to Lemma 1 engaged with other workers and will
therefore not make an offer to one of the k applicants that does not hold an offer. If the
firm observes a set of wage offers that differs from the ones stated in Lemma 1 and has a
belief bj,t

(
N,WN

)
∈ (0, 1) it is optimal to follow the action implied by the second part

of strategy C1a as characterized in Gautier and Moraga-Gonzalez (2004). Finally, if a
rejected firm observes that all its applicants hold an offer in round T , the action implied
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by strategy C1b, i.e., offering w = 1 to one of the candidates, is equally profitable as any
other action, since the engaged firms will match outside offers (as implied by strategy
B1). Thus, the rejected firm cannot do better by deviating from strategy C1b.
Consider now the strategies in any round t < T .
The workers’strategy, A2 to keep the best offer wh is a dominant strategy, because

the rejected firms’strategies C2a and C2b imply that keeping a lower offer can lead to
a lower payoff for the worker without increasing the chances of receiving better offers in
the future.
Consider now strategy B2 for engaged firms. Obviously, a firm can only be engaged,

if it offered a wage wh ≥ 0 in the past. Due to the tie-breaking rule, which implies
that workers prefer their engaged firm over an outside firm in case both firms offer the
same wage, matching an outside offer wh = 0 is optimal since it ensures that the firm
stays engaged at zero cost. Now consider the different cases if the outside offer satisfies
wh ≥ ∆. Denote the highest wage offer that the engaged worker (A) holds by wh and the
highest offer that another applicant holds by w̃h. If all other applicants hold the same
or a higher offer, i.e., w̃h ≥ wh, it is a dominant strategy to match the outside offer of
worker A, since it is the least costly way for the firm to stay engaged. It is also optimal
to match the outside offer of worker A if one of the other applicants (B) holds an offer
w̃h = wh −∆, because otherwise the engaged firm must offer applicant B w̃h + ∆ = wh

to have the chance to become engaged. Note, that the firm cannot be sure that it will
become engaged (since other firms might also compete for the same worker). If one of the
other applicants (B) holds no offer, matching the outside offer of worker A wh ≥ ∆ cannot
be optimal. To see this consider the different subgraphs a firm can be in. If the firm is in
a worker subgraph, offering the job to applicant B generates profit 1 while matching the
outside offer of worker A generates 1−∆ or less. If the firm is part of an even subgraph,
offering the job to applicant B leads to the expected profit γ + (1− γ) (1−∆), where
γ > 0 equals the probability that the firm will pay the wage w = 0, while matching the
outside offer of worker A generates 1−∆ for sure. If the firm is part of a firm subgraph,
profits are driven down to zero and the firm may as well not match the outside offer of
applicant A and offer the job to applicant B. Thus, not matching an outside offer wh ≥ ∆,
if one of the other applicants holds no offer is weakly dominating. The same is true, if
applicant B holds an offer w̃h < wh−∆, where w̃h ≥ 0. To see this, note first that w̃h ≥ 0
and w̃h < wh − ∆ imply wh > ∆. According to strategy C2b a firm (1) offers wh > ∆

only if WN =
{
WN−k−l−m−n,Øk, 0l,∆m, 1n

}
with k = l = 0 and m > 0. Lemmas 1 and

2 then imply that firm 1 that offered wh to worker worker A is part of a firm subgraph.
Since a firm in a firm subgraph will eventually pay a wage w = 1, it is optimal for the
engaged firm not to compete with firm 1 in the firm subgraph, i.e., not to match wh, but
to offer the job to applicant B at the wage w̃h + ∆ < wh.
The strategies C2a and C2b of rejected firms to pick (one of) the applicant(s) with the

lowest offer and to offer this applicant the job at the lowest possible wage are also optimal.
Any deviation would lead to lower profits. To see this consider deviations depending on
the set of wage offers WN and the type of subgraph the firm is in. Suppose at least one
applicant holds no offer, i.e., WN =

{
WN−k−l−m−q,Øk, 0l,∆m, 1q

}
with k > 0, and firm

(1) chooses in contrast to strategy C2a to offer the job to some engaged worker (A) that
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holds an offer wh ≥ 0. The profit of this deviating strategy will be 1−∆ in case the worker
is part of a worker subgraph, since firm 1 has to offer a wage w = ∆ in order to become
engaged. However, playing strategy C2a and offering the job to an applicant without
an offer ensures according to Lemma 1 a profit of 1. A similar argument implies that a
deviation leads to an expected profit of γ+(1− γ) (1−∆) in case firm 1 is part of an even
subgraph. If firm 1 is part of a firm subgraph deviating is equally profitable as playing
strategy C2a. Thus, without knowing the subgraph, i.e., with belief bj,t

(
N,WN

)
∈ (0, 1),

action C2a maximizes expected profits. Next, suppose that all applicants hold an offer and
at least one applicant holds an offer wh = 0, i.e., WN =

{
WN−k−l−m−q,Øk, 0l,∆m, 1q

}
with k = 0 and l > 0, and the deviating firm chooses in contrast to strategy C2b to offer
the job to some engaged worker (A) that holds an offer wh ≥ ∆. Note that Lemma 1
implies that wage offers wh = ∆ are only observed, if the worker is part of an even or firm
subgraph. The profit of this deviation will be 1− 2∆ in case the worker is part of an even
subgraph, since the deviating firm has to offer a wage w = 2∆ in order to become engaged.
Following strategy C2b and offering the job to an applicant with an offer wh = 0 ensures
a profit 1 − ∆ since wages in an even subgraph are no higher than ∆ (see Lemma 1).
If the deviating firm is part of a firm subgraph deviating is equally profitable as playing
strategy C2b, since profits are equal to zero anyway. Thus, without knowing the subgraph
deviating is never profitable. Finally, suppose all applicants hold an offer wh ≥ ∆, i.e.,
WN =

{
WN−k−l−m−q,Øk, 0l,∆m, 1q

}
with k = l = 0 and m ≥ 0, and the deviating firm

chooses in contrast to strategy C2b to offer the job to some engaged worker that holds
an offer wh > wh = minWN . Note that Lemmas 1 and 2 imply that wage offers wh ≥ ∆
are only observed by rejected firms, if they are part of a firm subgraph. Thus, offering
the wage w = wh + ∆ (as implied by strategy C2b) or any other wage w ∈

[
wh + ∆, 1

]
generates the same profit, as the wage in a firm subgraph will eventually increase to w = 1.
To sum up, deviating from strategy C2b without knowing the subgraph yields a strictly
lower expected payoff. �

A.4 Proof of Lemma 3
To be added.

B Simulation algorithm and decomposing a graph

into subgraphs

B.1 Simulation algorithm
In our simulations, we apply the following algorithm where step 2 follows Corominas-Bosch
(2004) which is based on Hall’s marriage theorem.

Decomposition Theorem (Corominas-Bosch, 2004):

(1) Every graph G can be decomposed into a number of firm subgraphs (Gf1 ,..., G
f
nf
),

worker subgraphs (Gw1 ,..., G
w
nw) and even subgraphs (G

e
1,..., G

e
ne) in such a way that each
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node (firm or worker) belongs to one and only one subgraph and any firm (worker) in
a firm-(worker-) subgraph Gfi,(G

w
i, ) is only linked to workers (firms) in a firm-(worker-

)subgraph Gfj (G
w
j ).

(2) Moreover, a given node (firm or worker) always belongs to the same type of subgraph
for any such decomposition. We will write G = Gf1∪...∪Gfnf ∪G

w
1 ∪...∪Gwnw ∪Ge1∪...∪Gene ,

with the union being disjoint.

The decomposition algorithm of Corominas-Bosch (2004) works as follows:
Step a: Eliminate all vacancies that did not receive any applicants.
Step b: For k = 2, ..., v, identify the groups of k vacancies that are jointly linked to less

than k workers. Remove and collect them. We refer to those subgraphs as firm subgraphs.
Step c: Repeat step b but now reverse the role of workers and vacancies. The resulting

subgraphs are called worker subgraphs.
Step d: When all worker subgraphs are removed, the remaining ones are balanced (or

even) subgraphs (with an equal number of workers and firms).
Denote the total number of firm subgraphs by F , the total number of worker subgraphs

byW , and the number of even subgraphs by E, ufi (u
e
i ) is number of workers in firm (even)

subgraph i, vwi is number of firms in worker subgraph i. v
f
i is the number of firms in firm

subgraph i, uwi is number of workers in worker subgraph i. The number of matches, M ,
is then given by,

M =
∑F

i=1
ufi +

∑W

i=1
vwi +

∑E

i=1
uei ,

the fraction of firms in firm subgraphs and the fraction of workers in worker subgraphs
by,

vf

v
=
∑F

i=1

vfi
v
and

uw

u
=
∑W

i=1

uwi
u
.

B.2 Simulation examples
To illustrate that having equal application arrival rates is desirable when agents do not
know the network we numerically compare equal application rates with the case where
a subset of vacancies has a higher application arrival rate. Take a, u, v as given and let
a < v. First, we color a fraction q of the vacancies blue and a fraction (1−q) green and let
each worker send one application to a blue vacancy and the other (a−1) applications to a
green one. Each blue vacancy receives an application from worker 1 with probability 1/qv
and the same for workers 2,..., u. For the a = 3 example, each green vacancy gets with
probability, (a− 1) /(1− q)v, the second application of worker 1 and if it did not get the
second one, it gets the third one with probability (a− 2) / ((1− q)v − 1) etc. The same
holds for the other workers. For q = 1/a, the arrival rate at each firm is the same and the
only difference with full equalization of application rates is that the market is partitioned.
Since we want to focus on network formation here, we assume maximum matching on
each realized network and use the Decomposition algorithm given above. Let pn be the
probability that a firm receives no workers, let var(M) be the variance of applicants that
a particular firm receives. Recall that the fraction of firms in firm subgraphs is vf/v and
the fraction of workers in worker subgraphs is uw/u. The matlab code is available upon
request.
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In Table 1 we present simulation results for v = u = 12. We generate a sample of
1000 networks for each case. Table 1 presents those variables for different values of a,
q. We see that partitioning the market reduces the expected number of matches, E(M),
but that for q = 1

a
(those rows are in bold), the arrival rate at each firm is the same and

the difference in the expected number of matches E(M) with the non partitioning case
is relatively small. We also see that if a is large relatively to v, that partitioning hardly
matters.

a pn E(M) var(M) vf/v uw/u

joint

2 1.343 10.416 0.812 0.012 0.061

3 0.377 11.554 0.382 0.045 0.343

6 0.003 11.997 0.003 0.000 0.003

partitioned (q = 1
3
)

2 1.748 10.064 0.875 0.187 0.684

3 0.405 11.533 0.387 0.046 0.347

6 0.124 11.876 0.111 0.010 0.122

partitioned (q = 1
6
)

2 2.851 9.137 0.945 0.242 0.675

3 0.719 11.206 0.540 0.075 0.510

6 0.005 11.995 0.005 0.000 0.005

Table 1: Simulation results for v = u = 12
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