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Abstract

We study the effect of frequent trading opportunities and categorization on pricing of a risky

asset. Frequent opportunities to trade lead to large distortions in prices if some agents forecast

future prices using a simplified model of the world that fails to distinguish between some states.

In the limit as the period length vanishes, these distortions take a particular form: the price

must be the same in any two states that a positive mass of agents categorize together. Price

distortions therefore tend to be large when different agents categorize states in different ways.

We characterize the limiting prices in terms of rational expectations prices associated with a

coarsened process. Similar results hold if, instead of using a simplified model of the world, some

agents overestimate the likelihood of small probability events, as in prospect theory.
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1 Introduction

Recent advances in technology have led to dramatic increases in trading speed. These changes have

generated considerable debate about the effect of high frequencies on market prices, with one side

arguing that, by providing liquidity, high frequency traders help to improve market efficiency, and

the other side claiming that high frequencies can destabilize market prices. We present a model

that lends support to the latter view and show that agents’ use of simplifying models of the world

can generate large distortions in prices at high trading frequencies.

We study a simple dynamic beauty contest in discrete time capturing pricing of a single risky

asset. In each period, each agent chooses a reservation price. The market price aggregates agents’

choices. The asset pays a flow dividend that depends on the current state, which is publicly observed

and evolves according to a Markov process. In choosing prices, agents consider both the current

dividend and the resale price in the next period. A key assumption of our model is that, to form

price forecasts, some agents draw on data from similar but different past states. In its simplest

form, these agents employ a simplified model of the world in which they fail to distinguish among

some differing states. When forecasting the price in the next period, these agents average the price

following all past periods that they perceive to be similar to the present one.

If enough agents use the finest possible categorization of states or form rational expectations,

then prices are close to rational expectations prices when the period length is not too small. How-

ever, as trading opportunities become frequent, distortions become large and prices collapse across

states. More precisely, whenever two states are categorized together by a positive but arbitrarily

small mass of agents, the price in those two states becomes identical in the high-frequency limit.

This result implies that prices are identical whenever two states are connected by a chain of states

along which adjacent states are categorized together (possibly by different agents); prices may be

identical even across states that no agent groups together. Thus distortions tend to be large when

categorization is heterogeneous. Moreover, limiting prices admit a simple characterization as ratio-

nal expectations prices associated with a coarsened process, one in which each state corresponds

to a category of states in the true process, and dividends and transition probabilities are convex

combinations of those in the true process.

Convergence of prices across large sets of states generates a particular pattern of price behavior
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over time exhibiting sudden large adjustments. Much of the time, prices do not respond to new

information, but occasionally there is an overreaction to small changes in fundamentals. These

relatively large price jumps occur when the state transitions between two categories.

Coarse prices arise from a combination of effects. First, learning using categories leads to out-

comes as if agents form rational expectations based on incorrect beliefs about the process governing

the evolution of states. These incorrect beliefs take a particular form: in addition to transitions

that occur under the true process, agents behave as if they have assigned some probability to the

state changing to another state in the same category. These beliefs are nonvanishing as the period

length vanishes. At the same time, the current dividend is proportional to the length of time the

asset is held. Hence shortening the period length reduces the influence of the dividend in price

formation relative to the expected future price. Thus the “as if” belief that the state is likely to

change drives the price together within each category.

Intuitively, one can think of the effect as follows. Suppose for contradiction that prices differ

within a category used by some agents. Consider the state within that category at which the price

is minimal (and suppose that there are no other agents categorizing that state together with one

where the price is even lower). Then, because agents using this category act as if they believe

the state is likely to transition to another state within the category, they act as if the price is

likely to go up very soon. Consequently, those agents will demand a large quantity at the current

price. This demand drives up the price, causing agents with rational expectations to view the asset

as overpriced, and hence to sell. Note, however, that as the trading frequency shrinks, so do the

dividend and the transition probabilities, causing the incentive of rational agents to sell the asset to

decrease in proportion to the period length. This means that, when trading is frequent, agents using

categorization expect a much larger gain from buying than do agents using rational expectations

from selling, causing them to demand more and drive the price up further. As the period length

vanishes, these two pressures on the market price will be balanced only if the differences in prices

within the category also vanish.

At a technical level, our results can be understood in terms of higher order expectations about

prices. Consider prices in a steady state, and suppose for simplicity that some agents categorize all

states together. Because those agents act as if they overestimate the likelihood of transitions, higher

order expectations converge quickly to the expectation with respect to the stationary distribution
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regardless of the current state. Moreover, since this convergence pertains to the near future, the

current price must be close to the higher order expectation, implying that prices are roughly

constant across states. A similar argument when agents use multiple categories gives rise to a

characterization of prices in terms of rational expectations prices associated with a simplified process

governing the evolution of states.

Our results extend naturally along two lines. First, category-based learning can be general-

ized to a broad class of learning rules in which agents extrapolate from similar but different past

states. Defining categories in terms of states that are perceived to be similar yields the same type

of results, although the precise characterization of prices is somewhat more complicated. Second,

similar results hold if, instead of learning by similarity, agents behave as if they form rational

expectations but some agents overweight the likelihood of small probability events, as in prospect

theory. Standard weighting functions used in the prospect theory literature (see, e.g., Prelec 1998,

Gonzalez and Wu 1999) have the property that, relative to the true probabilities, weighted proba-

bilities grow large as the probability vanishes. This property has essentially the same effect as the

nonvanishing transition probabilities in the “as if” beliefs that arise under learning by similarity.

Hence we obtain a similar result exhibiting coarse prices.

Throughout most of the paper, we take a reduced form approach to price formation that eschews

modelling demand and supply explicitly, and rather expresses current market price directly in terms

of forecasts of future prices. The reduced form approach is sufficient to highlight the mechanism

underlying the distortionary effect, and the main reason for taking it is tractability. The pricing

equation we apply directly would follow in a standard CARA-Normal overlapping generations

framework. However, a key assumption of the standard framework is that agents live for only

two periods, which is seemingly incompatible with our focus on vanishingly small period length.

Accordingly, we examine robustness of our results in a model with explicit supply and demand and

agents with long investment horizons. Although such a model appears to be intractable in general,

it is tractable when the state space is binary. In Section 6 we solve this special case of the model,

and show that the results are in accordance with the reduced form analysis. The microfounded

analysis has the added benefit of permitting the study of trade volumes and wealth accumulation.

As the period length vanishes, we find that traders take ever larger positions, with, in any given

state, agents using one form of categorization demanding increasingly large quantities that are
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supplied by agents using a different categorization (and both groups changing sides when the state

changes).

Our main result is stark and should not be taken too literally; the main goal of the paper is

simply to elucidate a mechanism by which high frequencies may amplify distortions resulting from

imperfect rationality. The discussion section describes some variations on the model that may go

against the constant price result (although the effect remains).

2 Related Literature

A number of earlier papers have highlighted the role of strategic complementarities in amplifying

the effect of irrational agents (e.g. Haltiwanger and Waldman 1985, Haltiwanger and Waldman

1989, Fehr and Tyran 2005). Our main result is driven in part by this effect, which is compounded

in our model because high frequencies strengthen strategic complementarities.

Our results can be understood in terms of higher order expectations about future prices. Among

others, Allen, Morris, and Shin (2006) and Bacchetta and Van Wincoop (2008) have highlighted

the role of higher order expectations in financial markets with asymmetric information. Since our

model is one of complete information, the main thrust of those papers is somewhat orthogonal to

the present one.

De Long, Shleifer, Summers, and Waldmann (1990b) show that irrational traders can induce

rational agents to behave in a way that destabilizes prices: if irrational traders chase trends, rational

traders’ demands increase ahead of an upturn in anticipation of greater demand from irrational

traders. Our model does not have this feature. Rational traders act as a stabilizing influence, but

do not fully stabilize prices. Similarly, in De Long, Shleifer, Summers, and Waldmann (1990a)

the same authors study how noise trader risk can distort prices, and show that risk aversion, by

limiting the size of positions, can cause rational traders to receive lower expected returns than do

noise traders. These papers are related in spirit to our point that irrationality can drive prices

away from rational expectations, but the mechanisms are very different.

While the style investing of Barberis and Shleifer (2003) is similar to the categorization in our

model, the focus is quite different. They consider a case with a large fraction of investors who

divide assets into a common set of styles over a fixed time horizon, while we focus on the effect
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Figure 1: Markov process for the examples of Section 3. Arrows depict possible transitions labelled
according to the rate at which they occur. Each d(ω) denotes the dividend in state ω.

of shortening horizons when agents use a variety of categorizations. Another key difference is

that Barberis and Shleifer assume that demands are based on relative past performance, while in

our model they are based on absolute past prices. Similar comments apply to Bianchi and Jehiel

(2010), who show that bubbles and crashes can arise when some agents form expectations about

price movements that are incorrect but consistent with the average across multiple periods.

3 Examples

We begin with a simple example to illustrate how categorization by some agents leads to large

distortions in prices when trading is frequent.

3.1 Two categories

A continuum of agents trade a single asset at times t = 0,∆, 2∆ . . . . The asset pays a dividend of

d(ωk)∆ per period that depends on the current state ωk ∈ {1, 2, 3, 4} in period k = t/∆. The state

is publicly observed prior to trade in each period. The state evolves according to the continuous-

time Markov process depicted in Figure 1. Flow dividends d(ω) are 0 in states 1 and 2 and 1 in

states 3 and 4.

We take a reduced-form approach to price formation. In each period k, each agent i chooses a

price pik, which can be interpreted as the price at which her demand is zero. The market price pk

is the average of all individual prices; that is,

pk =

∫

i

pikdi.
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For each agent i, the individual choice of price in period k is given by

pik =

∫ (k+1)∆

k∆
d(ωk)e

−(t−k∆)dt+ e−∆Qi
k+1 = d(ωk)(1 − e−∆) + e−∆Qi

k+1,

where Qi
k+1 is agent i’s forecast of the price at the next trading opportunity at time (k + 1)∆,

formed as described below. Thus the price chosen by agent i is equal to her expected gross profit

from holding one unit of the asset for one period. The discount rate is normalized to 1, which is

without loss of generality. For simplicity, we assume that flow dividend is constant throughout each

trading period.

For this example, agents are divided into two groups. A fraction 1 − π ∈ [0, 1) of agents

form rational expectations given all parameters of the model. The remaining fraction π are coarse

thinkers who form forecasts based on a simplified model of the market that fails to distinguish

between some states. For the purpose of this example, coarse thinkers fail to distinguish between

states that have the same dividend (the general analysis allows for arbitrary categorization that

may group together states having different dividends). That is, coarse thinkers group states 1 and

2 together, and states 3 and 4 together; accordingly, let C12 = {1, 2} and C34 = {3, 4} denote these

categories. Coarse thinkers form price forecasts according to the average of prices ps+1 across all

past periods s in which the state was in the same category as the current state. For example, if

the current state ωk = 2 then their forecast in period k of the price pk+1 is

∑

s<k−1:ωs∈C12
ps+1

∑

s<k−1:ωs∈C12
1

whenever the denominator is nonzero. If the denominator is 0 the forecast is an arbitrary fixed

value.

We focus on Markovian steady-state prices, which consist of a collection P (ω) of prices, one for

each state, satisfying

P (ω) = d(ω)(1− e−∆) + e−∆
(
(1− π)QR(ω) + πQC(ω)

)
, (1)

where QR(ω) and QC(ω) denote the steady-state price forecasts in state ω of agents with rational

expectations and coarse thinkers, respectively. We show in Section 4 that convergence to the
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Figure 2: Steady-state prices as a function of ∆ when the share of the coarse thinker is 10−3. Each
of the four curves depicts the price in one of the four states.

steady-state prices is guaranteed under the learning process described above.

The steady-state price forecasts QR(ω) and QC(ω) are determined by the steady-state prices

together with the transition probabilities and the categorization. Letting q∆(ω, ω
′) denote the

single-period transition probability from ω to ω′, the rational expectations forecasts are

QR(ω) =
∑

ω′

q∆(ω, ω
′)P (ω′). (2)

Coarse thinkers’ forecasts are given by

QC(ω) =
1

2

∑

ω′

q∆(ω, ω
′)P (ω′) +

1

2

∑

ω′

q∆(ω̂, ω
′)P (ω′), (3)

where ω̂ 6= ω is the other state in the same category as ω. To understand the formula, first note

that the stationary distribution of the process q∆ assigns equal probability to all four states. Thus

when the coarse thinker forms the price forecast by averaging over past periods, on average half of

the relevant past states will be ω and the other half ω̂.

If all agents form rational expectations, the price in each state is equal to the expected discounted

sum of dividends over the entire future. In particular, rational expectations prices differ across all

four states; for two states with the same dividend, the difference arises because of the difference in

transition rates to states with another dividend.
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Returning to the case in which some agents are coarse thinkers, by equations (1), (2), and (3),

for each ∆, steady-state prices solve a system of linear equations, one for each state. Figure 2

depicts steady-state prices as a function of the period length ∆ when coarse thinkers form 0.1% of

the population. Not surprisingly, when the period length is not too short, prices are close to those

obtained if all agents form rational expectations. However, as the period length vanishes, prices

collapse within each category used by coarse thinkers: prices in states 1 and 2 become identical,

as do prices in states 3 and 4. Prices fail to distinguish between states within each category used

by coarse thinkers even though coarse thinkers form only a small fraction of agents. Consequently,

relative to rational expectations prices, the time path of steady-state prices involves infrequent

changes in price combined with occasional overreactions to changes in the state (occurring when

the state changes from 2 to 3 or vice versa).

Why do prices collapse within categories at high frequencies? Coarse thinkers behave as if they

were overestimating transition rates within each category. They form forecasts exactly as if they

believe that, at the beginning of each period, there is a 50% chance that the state will immediately

transition to the other state in the current category (after which the state follows the process

q∆ until the next period). According to this belief, when the period length is short, transitions

within categories are much more likely than they are under the true process. Consequently, prices

within categories are driven together because coarse thinkers’ forecasts of the future price assign

significant weight to the price in the other state within the current category. To some extent,

rational agents counteract this effect. However, since their expected profits per period vanish along

with the period length, so does the gap between their individual prices and the market price; in

the limit, the corrective pressure exerted by rational agents disappears. As a result, coarse thinkers

effectively determine prices at high frequencies even if they form only a small fraction of the market.

Note that the distortion in prices at high frequencies is due to the use of coarse categories by

some agents, not because of the näıve rule used to forecast prices. If all agents followed the same

learning rule using the finest categorization (in which each state lies in its own category), then

steady-state prices would be identical to the rational expectations prices.
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Figure 3: Steady-state prices as a function of ∆ for π = 10−3 and π′ = 10−6. Each of the four
curves depicts the price in one of the four states.

3.2 Overlapping categories

Consider the modification of the previous example obtained by replacing a fraction π′ ∈ (0, 1−π] of

agents forming rational expectations with agents who categorize states 2 and 3 together but place

states 1 and 4 in singleton categories. As before, a fraction π of agents use categories C12 and C34,

while the remaining fraction 1 − π − π′ form rational expectations. Otherwise, all elements of the

example are identical.

Figure 3 depicts the steady-state prices as a function of ∆ for π = 10−3 and π′ = 10−6. As in the

previous example, when the period length is not too short, prices are close to rational expectations

prices. Since π′ is small relative to π, as ∆ shrinks prices initially remain similar to those of the

previous example. In contrast, however, once ∆ is small enough, prices collapse across all states to

a single price.

Relative to the previous example, the addition of a group categorizing one state in C12 together

with another in C34 is enough to drive all prices together under high frequencies. In particular,

prices in states 1 and 4 are identical in the limit as ∆ vanishes even though no agent categorizes

those states together and they differ in terms of fundamentals. In general, our results indicate that

if agents categorize states in different ways, price distortions tend to be severe in many states when

∆ is small; overlapping categorization leads to constant prices across large sets of states.
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4 Categorization

The convergence of prices across states in the examples of Section 3 occurs much more generally

as a result of coarse thinking. In this section, we present a general model capturing the idea that,

when learning to predict prices, some agents may employ a simplified model of the world that fails

to perfectly distinguish among all relevant states. The learning process of this section is generalized

in Appendix A to a broad class of similarity-based procedures. Sections 5 and 6 present related

models that exhibit similar coarse pricing results.

4.1 Model

We consider a single asset whose dividend depends on a state ω(t) drawn from a finite set Ω. The

state evolves according to an ergodic continuous-time stationary Markov process with transition

rates q(ω, ω′) from ω to ω′. Trading occurs at discrete times t = 0,∆, 2∆, . . . . We refer to time k∆

as period k, and write ωk for the state ω(k∆) in period k. Sampling the continuous-time process

q at times k∆ gives rise to a discrete-time Markov process (sometimes called the discrete skeleton

of q at scale ∆) with transition probabilities q∆(ω, ω
′). The state affects the flow dividend d(ωk)

of the asset, which is paid at a constant rate from time k∆ to (k + 1)∆.1

A continuum of agents indexed by i ∈ [0, 1] trades the asset in each trading period k. Trading

decisions are based on the current dividend and on agents’ forecasts of the prices in the following

period. Agents form these forecasts as follows. Each agent i categorizes states according to a

partition Πi of Ω that is fixed across all periods. Letting Π1, . . . ,ΠN denote those partitions

belonging to a positive measure of agents, we write πn for the measure of agents using partition

Πn. For each state ω, let Π(ω) denote the element of the partition Π containing ω. In period k,

agent i forms a forecast Qi
k+1 of the price in period k + 1 according to

Qi
k+1 =

∑

s<k−1:ωs∈Πi(ωk)
ps+1

∑

s<k−1:ωs∈Πi(ωk)
1

whenever the denominator is nonzero (otherwise take the forecast to be some arbitrary fixed num-

ber), where ps denotes the market price in period s as described below. Thus the price forecast

1The assumption that the dividend remains constant between periods instead of changing according to the
continuous-time Markov process simplifies the notation but makes no difference for our results.
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Qi
k+1 is formed by averaging all prices that occurred in periods immediately following those in

which the state was in the same category as the current one (according to Πi).

As in the examples, in each period, each agent chooses a price, which can be interpreted as the

current price at which their demand for the asset would be zero. Agent i’s choice in period k is

given by

pik = d(ωk)
(
1− e−∆

)
+ e−∆Qi

k+1. (4)

The first term captures the discounted value of the flow dividend paid from time k∆ to (k + 1)∆.

The second term captures the effect of the anticipated resale price. The market price pk is defined

to be the average of pik across all agents i; that is, letting pnk denote the price of each agent using

partition Πn,

pk =

N∑

n=1

πnp
n
k . (5)

4.2 Steady-state prices

Proposition 1 below shows that this learning process converges to steady-state prices P : Ω −→ R

that depend only on the current state. Steady-state prices turn out to be identical to rational

expectations prices, not with respect to the true process, but with respect to a different process

that reflects both the true process q∆ and the categorizations used by agents.

Definition 1. Given any ∆, prices P (ω) are (steady-state) rational expectations prices with respect

to a Markov process m on Ω and a dividend function d if

P (ω) = d(ω)(1 − e−∆) + e−∆Em(ω,ω′)[P (ω′)]

for every ω ∈ Ω.2

Note that the rational expectations price P (ω) is the discounted stream of expected dividends

starting from state ω under the Markov process m.

Rational expectations prices with respect to q∆ depend on ∆ only because of the simplifying

assumption that flow dividends do not change between trading periods. We sometimes refer to

rational expectations without reference to ∆ to mean the limiting prices as ∆ vanishes. Accordingly,

2Note that for any m and d, rational expectations prices exist and are unique.
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rational expectations prices with respect to q are given by the unique solution to the system of

equations

P (ω) =
d(ω) +

∑

ω′ 6=ω q(ω, ω
′)P (ω′)

1 +
∑

ω′ 6=ω q(ω, ω′)
.

Let φ denote the stationary distribution of states with respect to the true process q, which

satisfies the global balance equations
∑

ω′ 6=ω φ(ω)q(ω, ω′) =
∑

ω′ 6=ω φ(ω
′)q(ω′, ω). For given initial

prices and a given realization of the sequence of states (ωs)
k−1
s=0 , let pk(ω) denote the price in period

k that would obtain if ωk = ω. Define the modified process by

m∆(ω, ω
′) =

N∑

n=1

πn
∑

ω′′∈Πn(ω)

φ
(
ω′′ |Πn(ω)

)
q∆(ω

′′, ω′). (6)

Proposition 1. For each ∆, the sequence pk(ω) almost surely converges to the vector P∆(ω) of

rational expectations with respect to the modified process m∆ and the dividend function d.

All proofs are in the appendix. In particular, Proposition 1 is a corollary of Proposition 5 in

Appendix A.

To understand the modified process m∆, first consider the case in which all agents distinguish all

states, i.e. Πi(ω) = {ω} for every ω and i. In this this case, m∆ = q∆, and hence the long-run prices

are precisely the rational expectations prices with respect to the true process. To see why, consider

the forecasting procedure. In period k, each agent uses data from previous periods s < k − 1 in

which the state was indistinguishable from the current state (according to her own categorization).

For the finest categorization, these relevant periods are those s such that ωs = ωk. In the steady

state, the agent’s forecast is just the average of P (ωs+1) across the relevant periods s. In the long

run, the forecast is equal to
∑

ω′ q∆(ωk, ω
′)P (ω′), coinciding with the rational expectation of the

price in the next period.

For general categorizations, a given agent’s forecast is based on all previous periods s in which

the state ωs belonged to the current category Πi(ωk). In the long run, the average of P (ωs+1) for

those values of s is equal to

∑

ω′′∈Πi(ω)

φ
(
ω′′
∣
∣Πi(ω)

)
q∆(ω

′′, ω′)P (ω′),
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where the term φ
(
ω′′
∣
∣Πi(ω)

)
captures the long-run frequency of state ω′′ in the sample of relevant

periods s. Taking the average across agents, the population-wide forecast is the expectation with

respect to the modified process m∆ in (6).

Appendix A extends Proposition 1 in two directions. First, we extend the price forecasting

rule to a general class of similarity-based rules in which agents forecast using data from similar

past states. Unlike the categorization considered here, the weights assigned to different states may

vary according to the perceived degree of similarity. Second, we allow for an arbitrary fraction of

agents to form rational expectations knowing all parameters of the model, including other agents’

forecasting procedures. In the long run, such agents have the same effect on prices as agents who

categorize every state separately.

4.3 High frequency

While Proposition 1 provides a general characterization of long-run prices for any ∆, focusing on

high frequencies (i.e. vanishing ∆) leads to a striking result: prices generally fail to distinguish

among states that may differ substantially in terms of fundamentals.

Let Π denote the meet of Π1, . . . ,ΠN .3 We refer to the elements of Π as aggregate categories.

Two states ω and ω′ lie in the same aggregate category if and only if there exists a sequence

ω1, . . . , ωr of states such that ω = ω1, ω
′ = ωr, and for each ℓ = 1, . . . , r − 1, ωℓ+1 ∈ Πn(ωℓ) for

some n ∈ {1, . . . , N}. In particular, given two states in different aggregate categories, almost every

agent distinguishes between those two states, but the converse is not true in general; two states in

the same aggregate category may be distinguished by all agents.

The main result of this paper shows that, in the limit as ∆ vanishes, prices are constant on

aggregate categories. Moreover, prices approach rational expectations prices with respect to a

process that is coarser than the true process, with each aggregate category playing the role of an

individual state.

Define the coarse process q to be the continuous-time Markov process on the state space Π with

transition rates

q(C,C ′) =
∑

ω∈C

φ(ω|C)
∑

ω′∈C′

q(ω, ω′).

3The meet of a collection of partitions is defined to be their finest common coarsening.
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That is, the coarse process q is obtained by averaging the true process q across each category

with respect to the stationary distribution φ. Similarly, define the coarse dividend function d by

averaging dividends on each category C ∈ Π; that is,

d(C) =
∑

ω∈C

φ(ω|C)d(ω)

for each C ∈ Π.

Theorem 2. As ∆ vanishes, prices become constant on each aggregate category; that is, for any

ω, ω′ such that Π(ω) = Π(ω′),

lim
∆→0

(
P∆(ω)− P∆(ω

′)
)
= 0.

Moreover, for each ω, lim∆→0 P∆(ω) is equal to the rational expectations price with respect to q

and d in state Π(ω).

The theorem is a special case of Theorem 7 in Appendix B.

For high trading frequencies, this result indicates that whenever a positive mass of agents fail to

distinguish between two states the market price will be the same in those states. However, that is

not all: prices may often be the same in two states even if no agent categorizes them together. This

is the case if there is an overlapping chain of categories connecting these states; for example, if, as in

the example of Section 3.2, one group categorizes ω and ω′′ together while another group categorizes

ω′′ and ω′ together, then ω and ω′ lie in the same aggregate category and prices are the same across

all three states. Consequently, if agents do not use the same categories, aggregate categories will

typically be large, potentially leading to large distortions in prices. Put differently, market prices

represent a coarser view of the world than that held by individual market participants.

4.4 Example: Pricing of irrelevant information

To illustrate Theorem 2, consider the underlying process depicted in Figure 4 with state space

{1, 2, 3, 4}. States 1, 2, and 3 are identical in terms of underlying fundamentals (i.e. in terms of the

distribution of future dividends) since they share the same dividend and transition rate to state 4,

the only state at which the dividend differs from zero. If all agents form rational expectations, it
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d(1) = 0 d(2) = 0 d(3) = 0 d(4) = 1
1 1

1

1

1

Figure 4: Markov process for the example of Section 4.4.

d({1}) = 0 d({2}) = 0 d({3, 4}) = 1/2
1

1

2

1

1/2

Figure 5: Coarsened Markov process for Example 4.4.

is straightforward to show that, in the limit as ∆ vanishes, prices approach

P (1) = P (2) = P (3) =
1

6
and P (4) =

1

3
.

Now suppose that a positive mass of agents categorize states 3 and 4 together, that is, they

use the partition Π = {{1}, {2}, {3, 4}}, while all other agents use the finest partition. Hence

aggregate categories are given by Π. According to Theorem 2, limiting prices are equal to rational

expectations prices associated with a coarsened process with state space Π, as depicted in Figure

5. The coarsened process is obtained by averaging the true process with weights determined by the

stationary distribution φ. Since the stationary distribution is uniform, transition rates out of state

{3, 4} in the coarsened process are obtained by taking a simple average of the corresponding rates

in the true process, while transition rates to state {3, 4} are obtained by adding the corresponding

rates in the true process. Similarly, the dividend in state {3, 4} is simply the average of the original

dividends.

Calculating the rational expectations prices associated with the coarsened process yields

P ({1}) =
6

35
, P ({2}) =

1

5
, and P ({3, 4}) =

11

35
.

While our results may suggest that, with high frequencies, categorization leads to an unam-
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biguous coarsening of prices, the present example shows that not to be true in general. Not only

do prices in states 3 and 4 become equal, but prices also differ across states 1 and 2 since these

states differ in terms of the rate of transitions to the aggregate category {3, 4}. In particular, even

though all agents correctly distinguish states 1 and 2 from all other states, and these two states

feature identical fundamentals, the price is higher in state 2 than in state 1.

5 Weighted probabilities

The last section indicates that coarsening of steady-state prices arises because agents who categorize

two given states together effectively overestimate the probability of transitions between them. In

this section we analyze a simple setting in which a similar result arises not from coarse thinking

but from the use of weighted probabilities, as in prospect theory. In particular, we assume here

that some agents overweight the likelihood of small probability events.

The sets of agents and actions, the discount rate, and the Markov process are the same as in

Section 4. The key difference is in agents’ forecasts of future prices. Each agent i forms forecasts

using a belief mi
∆(ω, ω

′) capturing the probability she assigns to the state at time t+ ∆ being ω′

if the state at time t is ω. Let

m∆(ω, ω
′) =

∫

i

mi
∆(ω, ω

′)di (7)

denote the average belief. We focus on rational expectations prices with respect to m∆ and d.

For some π ∈ (0, 1], a fraction of 1−π of all agents i have correct beliefs mi
∆(ω, ω

′) ≡ q∆(ω, ω
′).

The remaining fraction π form beliefs using a probability weighting function λ : [0, 1] −→ R+; that

is, each such agent i has beliefs given by

mi
∆(ω, ω

′) =
λ(q∆(ω, ω

′))
∑

ω′′ λ(q∆(ω, ω′′))
. (8)

We assume that λ overweights the likelihood of small probability events in the sense that limp→0+
λ(p)
p

=

+∞. This assumption holds for most weighting functions commonly used in prospect theory (e.g.,

Prelec 1998, Gonzalez and Wu 1999).

For simplicity, assume in addition that q(ω, ω′) > 0 for all distinct ω, ω′ ∈ Ω. Without this

assumption, the same result holds under more restrictive conditions on λ. For example, Proposition
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3 holds without this assumption for weighting functions of the form λ(p) = exp
(
−ζ(− ln p)ξ

)
with

ζ > 0 and ξ ∈ (0, 1), as axiomatized by Prelec (1998).

For each ∆, let P∆ ∈ R
Ω be rational expectations prices with respect to m∆ and d.

Proposition 3. As ∆ vanishes, prices become constant across all states; that is, for any ω, ω′ ∈ Ω,

we have

lim
∆→0

P∆(ω)− P∆(ω
′) = 0.

Moreover, in the limit, the price in each state is equal to the expected dividend with respect to the

limit of the stationary distribution of m∆ as ∆ → 0 (provided that the limit exists).

Proposition 3 is a special case of Theorem 7 in Appendix B.

The intuition behind Proposition 3 is as follows. According to the average belief m∆, when ∆

is small, the state is likely to transition away from ω within a short time (although it may take

many periods). In fact, with respect to absolute time, the distribution of future states quickly

converges to the stationary distribution of m∆. Since current prices ultimately depend on higher-

order expectations of prices in future periods, when ∆ is small, prices can be approximated by prices

obtained when dividends and transition probabilities are replaced with their averages according to

the stationary distribution.

5.1 Example

Assume that all agents form forecasts using probabilities weighted according to λ(p) = pβ, where

β ∈ (0, 1). That is, for any agent i,

mi
∆(ω, ω

′) =
(q∆(ω, ω

′))β

∑

ω′′ (q∆(ω, ω′′))β

for every ω and ω′. Consider the two-state process depicted in Figure 6 with q1, q2 > 0.

By Proposition 3, prices are constant across states in the limit as ∆ → 0. Moreover, prices

are equal to a weighted average of the dividends in the two states. However, unlike the case of

categorization, the average is not weighted according to the stationary distribution φ, but rather

according to the stationary distribution of m∆. As ∆ → 0, the stationary distribution of m∆

tends to the distribution assigning probability qβ2 /
(

qβ1 + qβ2

)

to state 1 (whereas the stationary
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d(1) = 0 d(2) = 1

q1

q2

Figure 6: Markov process for the example of Section 5.1.

distribution of the true process is identical except with 1 in place of each β). Therefore, by

Proposition 3, the price in each state approaches qβ1 /
(

qβ1 + qβ2

)

as ∆ vanishes. The less frequent

state receives disproportionate weight in price formation.

6 Long horizons

For the sake of tractability, we have taken a reduced form approach to price formation. The pricing

equations (4) and (5) that we use arise naturally in CARA-Normal overlapping generations models

where agents live for only two periods (see, e.g., Allen, Morris, and Shin (2006)). Solving such a

model with longer-lived agents (and uncertainty that is not normally distributed) is intractable in

general; we can, however, solve the case in which there are only two states, Ω = {0, 1}. Our basic

insight extends to this setting. If a fraction of the population categorizes the two states together

or overestimates transition probabilities then prices collapse across the two states.

Consider the following overlapping generations model. Each agent i participates in the market

for a random number of periods ni ≥ 1, where ni = n with probability ∆(1−∆)n−1. Agent i does

not observe ni until she exits the market. Exiting agents are replaced by entrants. Agents trade an

asset of 0 supply whose flow dividend d(ω) depends on the current state, which evolves according

to a Markov chain q∆ on {0, 1}. The analysis of this section focuses on the steady state; agents

form their demands facing steady-state prices P (ω). That is, an agent i entering the market in

period k0 chooses in each period k ∈ {k0, . . . , k0 + ni − 1} a demand αk, and accumulates wealth

w =
∑

k∈{k0,...,k0+ni−1}

e−(k−k0)∆αk

(
−P (ωk) +

(
1− e−∆

)
d(ωk) + e−∆P (ωk+1)

)
,

where the term e−(k−k0)∆ captures time discounting. Each agent consumes all of her wealth when
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she exits (after period k0 + ni − 1), and has constant absolute risk aversion utility u(w) = −e−w.

The population of agents consists of a group R of rational agents and a group C of coarse

thinkers, with measures πR and πC respectively, where πR+πC = 1. Agents from group G ∈ {R,C}

believe that the asset evolves according to a Markov chain qG∆(ω, ω
′), where qR∆ is the true process

q∆. Where there is no risk of confusion, we omit the subscript ∆.

A stationary equilibrium consists of prices P (ω) and demands αG(ω) such that

1. Agents optimize:

αG(ωk) ∈ argmax
α

EG

[
− exp

(
−w′ − α

(
−P (ωk) +

(
1− e−∆

)
d(ωk) + e−∆P (ωk+1)

))∣
∣ωk

]

where EG denotes the expectation with respect to the process qG∆ and

w′ =
∑

s∈{k0,...,k−1,k+1,...,k0+ni−1}

e−(s−k0)∆αG(ωs)
(
−P (ωs) +

(
1− e−∆

)
d(ωs) + e−∆P (ωs+1)

)

is the wealth accumulated in periods other than k. Note that, as implied by the notation,

individual demands are independent of wealth and time spent in the market. The former

follows from constant absolute risk aversion and the latter from stationarity.

2. The market clears:
∑

πGα
G(ω) = 0 for all ω.

We assume that coarse thinkers overweight transition probabilities across the two states in such

a way that lim∆→0
qC∆(ω,ω′)

q∆(ω,ω′) = ∞ for ω 6= ω′.

Proposition 4. As the period length vanishes, prices collapse across the two states; that is,

lim
∆→0

(P∆(1) − P∆(0)) = 0.

7 Discussion

In order to highlight the effect of high frequencies, we have focused on a simple tractable model

in which the resulting prices take a stark form. A number of natural modifications of the model
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may moderate the effect while retaining significant price distortions with high frequencies. In this

section, we speculate about the consequences of various extensions and modifications to the main

model.

Traders in our model live forever and have no limits on losses. Since traders using coarse

models tend to lose money against traders using refinements of those models, forcing traders to

exit once reaching a given loss threshold could drive all agents out of the market except those who

form rational expectations (or use the finest categorization), thereby eliminating price distortions.

However, since our results hold independent of the fractions of agents using various partitions, we

conjecture that our results hold as long as there is continual entry of a nonvanishing mass of new

traders using coarse categories.

In the variant of our model that incorporates individual demands in Section 6, risk aversion

limits the size of the position taken by each trader. Since agents who form rational expectations

perceive the risk of state transitions over a short horizon to be very low, risk aversion tends to limit

their positions less than those of agents who use coarse categorization. Thus at a fixed trading

frequency we expect that increasing risk aversion should reduce price distortions. However, as

Section 6 indicates, risk aversion alone does not overturn the constant price result in the high

frequency limit.

For the sake of parsimony, we have assumed that agents employ categories that are fixed across

time. Alternatively, one might expect agents to adjust their categories as they learn the correct

model. If learning leads to successive refinements in categorization toward the finest categoriza-

tion, then our results may not hold in the long-run. As with bankruptcies, however, we expect

that continual entry of agents using coarse categories would suffice to generate persistent price

distortions.

Another simplifying assumption of our model is that all agents have identical short horizons. If

instead some agents maintain their positions for some fixed time that is independent of the period

length then these agents may drive prices back toward fundamentals. On the one hand, under

our reduced form approach in Sections 4 and 5, the addition of such traders would reduce the

impact of coarse categorization, leading to prices lying between rational expectations and constant

prices on categories. On the other hand, explicitly considering individual demands may mitigate

the influence of these agents since agents with shorter horizons face less risk and therefore tend to
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take larger positions. Again, as Section 6 indicates, coarse pricing may prevail even when agents

face long trading horizons.

A Convergence of Prices

This appendix proves convergence of the learning process described in Section 4, extends the result

to a more general class of processes in which agents learn from similar past states, and shows that

our results remain unchanged if we allow for some agents to form rational expectations. We start by

describing learning by similarity, which includes categorization as a special case. We then consider

an even more general class of processes that is sufficiently broad to allow for the inclusion of agents

who form rational expectations about future states and other agents’ behavior.

A.1 Learning by similarity

The categorization framework of Section 4 is a special case of a model in which agents learn prices

based on past prices in states similar to the current one, but do not necessarily apply equal weight

to all similar states. The convergence and characterization result of Proposition 1 extends to this

more general case.

Each agent i is endowed with a symmetric similarity function gi : Ω × Ω −→ R+ determining

the weight assigned to various states in forming forecasts of future prices. We assume that for each

i and ω, there exists some ω′ such that gi(ω, ω
′) 6= 0. Given a history of states and prices up to

period k − 1, agent i’s forecast in period k of the price in period k + 1 is

Qi
k+1 =

∑

s<k−1 gi(ωk, ωs)ps+1
∑

s<k−1 gi(ωk, ωs)

whenever the denominator is nonzero, and some fixed constant otherwise. Thus the forecast is

formed by averaging the one-period-ahead prices in all past states, weighted according to the

degree of similarity to the current state. The categorization of Section 4 is a special case of this

framework in which, for each i, gi takes only the values 0 and 1.

For simplicity, we assume that only a finite number of different similarity functions are used

by the agents. That is, there exists a finite partition of the population into groups of measures
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π1, . . . , πN , and similarity functions g1, . . . , gN such that, for each n, every agent in n’s group uses

similarity function gn. As before, each agent’s action in each period is given by (4) and the market

price in period k is the population-wide average action given by (5).

We show in the next subsection that Proposition 1 carries over directly to this setting except

that the modified process m∆ is defined more generally by

m∆(ω, ω
′) =

N∑

n=1

πn

∑

ω′′ gn(ω, ω
′′)φ(ω′′)q∆(ω

′′, ω′)
∑

ω′′ gn(ω, ω′′)φ(ω′′)
. (9)

Within each group, in the steady-state price forecasts, the weight given to each possible state ω′ one

period ahead is based on the likelihood of transitions to ω′ from each state ω′′ similar to the current

state ω. The weight given to the transition from ω′′ to ω′ depends on the similarity between ω and

ω′′ together with the frequency φ(ω′′) with which state ω′′ occurs. The aggregate distribution m∆

is obtained by averaging the individual distributions across all agents. Note that, as before, agents

should be interpreted as behaving, in the long-run, as if they believe (on average) that the state

evolves according to m∆; agents do not literally hold these beliefs.

A.2 Proof of Proposition 1

The general learning process is as follows. The state space Ω and the true process q are as in the

main text. Without loss of generality, we focus on the case ∆ = 1. Let ω
k = (ωs)

k
s=0 denote the

finite history of states up to period k, and pk = (ps)
k−1
s=0 be the history of prices up to period k− 1.

We assume that all prices lie in a bounded interval [p, p]. The price pk in period k is determined

according to

pk = (1− ρ)d(ωk) + ρQ
(

ω
k,pk

)

, (10)

where Q :
⋃

k

(
Ωk × [p, p]k−1

)
−→ [p, p] can be interpreted as the average forecast of the price in

period k + 1 and ρ = e−1 is the discount factor.

We assume that Q satisfies the following condition.

A1. There exists a continuous monotone function

E : [p, p]Ω −→ [p, p]Ω
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such that, for any P ,P ∈ [p, p]Ω, any K, and any ε > 0, if

Pr
(
pk ∈ [P ,P ] ∀k > K

)
> 1− ε, (11)

then for any δ > 0 there exists K ′ such that, for each ω,

Pr
(

Q
((

ω
k, ω
)

,pk
)

∈
(
E(P )(ω)− δ, E(P )(ω) + δ

)
∀k > K ′

)

> 1− ε− δ. (12)

In the case of a homogeneous population using similarity function g, the learning process from

Section A.1 (and hence also the categorization-based learning from Section 4) is captured by

Qsim
(

ω
k,pk

)

=







∑
s<k−1 g(ωk ,ωs)ps+1∑

s<k−1 g(ωk ,ωs)
if
∑

s<k−1 g(ωk, ωs) > 0,

p0 otherwise,

where p0 is arbitrary. For a heterogeneous population, Q is obtained by aggregating the values of

Qsim across groups (see Lemma 2).

Lemma 1. For any similarity function g, Qsim satisfies A1 with

E(P )(ω) =
∑

ω′

m∆(ω, ω
′)P (ω′),

where m∆ is the modified process in (9).

Proof. We prove only the upper bound; the proof for the lower bound is similar. Suppose that for

some K, ε > 0, and P , Pr
(
pk ≤ P ∀k > K

)
> 1 − ε. Given any δ > 0 and γ > 0, by the Law of

Large Numbers, there exists some K ′ > K such that, with probability greater than 1− δ, for every

pair (ω′, ω′′) and every k > K ′, the fraction of periods s < k such that (ωs, ωs+1) = (ω′, ω′′) lies in

(φ(ω′)q∆(ω
′, ω′′)− γ, φ(ω′)q∆(ω

′, ω′′) + γ). Since the process q∆ is ergodic, we can choose K ′ such

that this property holds regardless of the history ω
K . Furthermore, for K ′ > K/γ, ps ≤ P (ωs)

for a fraction of at least 1 − γ periods s ≤ k with probability greater than 1 − ε, in which case

the average of the prices ps+1 across those periods s such that (ωs, ωs+1) = (ω′, ω′′) is at most
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(1− γ)P (ω′′) + γp. Hence for k > K ′, we have

Qsim
(

ω
k,pk

)

≤

∑

ω′,ω′′ g(ωk, ω
′′)(φ(ω′′)q∆(ω

′′, ω′) + γ)((1 − γ)P (ω′) + γp)
∑

ω′′ g(ωk, ω′′)(φ(ω′′)− γ)

with probability greater than 1− ε− δ. Given δ > 0, we can choose γ > 0 sufficiently small so that

the right-hand side of the preceding inequality is less than E(P )(ωk) + δ, as needed.

In the main text, agents differ in their forecasting procedures and the price is determined by the

average of agents’ forecasts. The following lemma indicates that A1 aggregates across heterogeneous

groups.

Lemma 2. Suppose that a fraction πn of the population use prediction rule Qn, with
∑N

n=1 πn = 1.

Suppose moreover that all rules Qn satisfy A1 with functions En(P ) respectively. Finally assume

that price evolution is governed by (10) with prediction rule Q =
∑

πnQ
n. Then Q satisfies A1

with E(P ) =
∑

n πnE
n(P ).

Proof. Using the property of A1 with πnδ for each subpopulation and taking the maximum of the

K ′ needed for each process gives the result.

Proposition 1 is a special case of the following convergence result.

Proposition 5. If Q satisfies A1, prices are determined according to (10), and the mapping (1−

ρ)d + ρE is a contraction (with respect to some metric) then prices almost surely converge to the

unique fixed point of d+ ρE.

In the case of learning by similarity, (1−ρ)d+ρE is a contraction with respect to the sup norm,

and we therefore obtain convergence to a unique price profile, proving Proposition 1.

Proof of Proposition 5. The mapping (1−ρ)d+ρE has extreme fixed points P ∗, P
∗
: for every fixed

point P ∗, we have P ∗ ≤ P ∗ ≤ P
∗
. This follows immediately from Tarski’s Fixed Point Theorem

since [p, p]Ω is a complete lattice and (1− ρ)d+ ρE is continuous and monotone.

We will prove that for each ω, the set of cluster points of (pk(ω))k is almost surely contained

in [P ∗(ω), P
∗
(ω)]. The proposition follows immediately since the fixed point is unique when (1 −

ρ)d+ ρE is a contraction.
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We prove only that the cluster points are almost surely at most P
∗
(ω). The proof of the lower

bound is similar.

Let P 0 = p1, where 1 denotes the vector with a 1 in each component, and for l ∈ N+, let

P l = (1 − ρ)d + ρE(P l−1). Since P l is nonincreasing in l, liml P l exists and is a fixed point of

(1− ρ)d+ ρE (by continuity of E).

Note that pk ≤ P 0(ωk) for each k > 0. Suppose for induction that, given any ε > 0, there exists

Kl such that

Pr
(
pk < P l(ωk) + ε for all k > Kl

)
> 1− ε.

We will show that the same condition holds when each l is replaced with l + 1.

For any δ > 0, combining A1 with the inductive hypothesis, there exists some Kl+1 such that

Pr
(

Q
(

ω
k,pk

)

< E(P l + ε1)(ωk) + δ ∀k > Kl+1

)

> 1− ε− δ.

Substituting for Q
(
ω

k,pk
)
using (10), we have

Pr
(
pk < (1− ρ)d(ωk) + ρE(P l + ε1)(ωk) + δ ∀k > Kl+1

)
> 1− ε− δ.

Given any γ > 0, since E is continuous, there exist some ε, δ ∈ (0, γ) such that, for each ω,

ρE(P l + ε1)(ω) + δ < ρE(P l)(ω) + γ. Since ε and δ are arbitrary, we have that, for some Kl+1,

Pr
(
pk < (1− ρ)d(ωk) + ρE(P l)(ωk) + γ ∀k > Kl+1

)
> 1− γ.

Since P l+1 = (1− ρ)d+ ρE(P l), this completes the proof of the inductive step.

A.3 Presence of rational agents

We now consider a setting in which some agents form rational expectations. For simplicity, we

assume that the population consists of two parts. A fraction π of agents are rational while the

remaining 1 − π are coarse thinkers who use a prediction rule QC satisfying A1. Rational agents

know QC and the underlying Markov process, and form rational expectations of the forecasts formed
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by coarse thinkers in the next period. The rational agents’ prediction rule QR satisfies

QR
(

ω
k,pk

)

= E
[

(1− ρ)d(ωk+1) + ρ
(

(1− π)QC
(

ω
k+1,pk+1

)

+ πQR
(

ω
k+1,pk+1

))∣
∣
∣ω

k
]

.

(13)

This equation implies that rational agents correctly predict prices given the history to date and the

prediction rules used by other agents.

While the model in the main text does not include rational agents, it does allow for some agents

to perfectly distinguish among states. These agents are not rational insofar as their price forecasts

are based only on past data and do not explicitly account for other agents’ forecasts. We show

here that, in the long-run, the difference between these agents and rational agents is immaterial.

Long-run prices are identical if we replace any share of agents using the finest categorization with

agents who form rational expectations.

A2. For each ω ∈ Ω, K ∈ N, and almost every ω ∈ ΩN,

lim
k→∞

(

QC
((

ω
k, ω
)

,pk
)

−QC
((

ω
k+K , ω

)

,pk+K
))

= 0,

where, for each κ, ωκ denotes the projection of ω onto its first κ components.

Roughly speaking, A2 says that data from a fixed finite number of recent periods eventually

has little impact on forecasts once the total quantity of data is large. Note that A2 is satisfied by

the similarity-based learning procedure of Section A.1.

Proposition 6. Suppose that a fraction π of the population form rational expectations, and the

remaining 1 − π use a prediction procedure QC satisfying A1 with bound EC(P ) and A2. Suppose

further that the mapping (1 − ρ)d + ρEC(P ) is a contraction. Then the price vector P (ω) almost

surely converges to the unique solution of

P (ωk) = (1− ρ)d(ωk) + ρ
(
πE [P (ωk+1) | ωk] + (1− π)EC(P )(ωk)

)
.

Lemma 3. If QC satisfies A1 with bound EC and A2 then QR satisfies A1 with bound

ER(P )(ωk) = E

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ
∞∑

l=1

(πρ)l−1EC(P )(ωk+l)

∣
∣
∣
∣
∣
ωk

]

. (14)
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Proof of Lemma 3. Iterating (13) gives

QR
(

ω
k,pk

)

= E

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ

∞∑

l=1

(πρ)l−1QC
(

ω
k+l,pk+l

)
∣
∣
∣
∣
∣
ω

k

]

.

We need to show that for any P ,P ∈ [p, p]Ω, any K, and any ε > 0, if condition (11) holds,

then for any δ > 0 there exists K ′ such that (12) holds for QR. We prove only the upper bound;

the proof of the lower bound is similar.

Accordingly, suppose that (11) holds for some ε > 0 and K. Fix δ > 0. Since QC and EC are

bounded, there exists M such that, for every ω
k and pk

QR
(

ω
k,pk

)

<

E

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ

(
M∑

l=1

(πρ)l−1QC
(

ω
k+l,pk+l

)

+

∞∑

l=M+1

(πρ)l−1EC(P )(ωk+l)

)∣
∣
∣
∣
∣
ω

k

]

+ δ/3. (15)

Since QC satisfies A1, there exists some K ′ such that, for each ω,

Pr
(

QC
((

ω
k−1, ω

)

,pk
)

< EC(P )(ω) + δ/3M ∀k > K ′
)

> 1− ε− δ/2. (16)

By A2, there exists some K ′′ such that, for each l = 1, . . . ,M ,

Pr
(

QC
(

ω
k+l,pk+l

)

< QC
((

ω
k−1, ωk+l

)

,pk
)

+ δ/3M ∀k > K ′′ | ωk
)

> 1− δ/2M. (17)

Combining (16) and (17) gives

Pr
(

QC
(

ω
k+l,pk+l

)

< EC(P )(ωk+l) + 2δ/3M ∀k > max{K ′,K ′′}, ∀l = 1, . . . ,M | ωk
)

> 1−ε−δ.

Combining the last inequality with (15) gives

Pr
(

QR
(

ω
k,pk

)

< ER(P )(ωk) + δ ∀k > max{K ′,K ′′}
)

> 1− ε− δ,

as needed.
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Proof of Proposition 6. Combining Lemma 2, Lemma 3, and Proposition 5, the cluster points lie

between the extremal solutions to

P = (1− ρ)d+ ρ
(
πER(P ) + (1− π)EC(P )

)
.

Substituting for ER(P ) using (14) leads to

P (ωk) = (1− ρ)d(ωk) + ρπE

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ
∞∑

l=1

(πρ)l−1EC(P )(ωk+l)

∣
∣
∣
∣
∣
ωk

]

+ ρ(1− π)EC(P )(ωk)

= (1− ρ)d(ωk) + ρπE

[

E

[
∞∑

l=1

(πρ)l−1(1− ρ)d(ωk+l) + (1− π)ρ

∞∑

l=1

(πρ)l−1EC(P )(ωk+l)

∣
∣
∣
∣
∣
ωk+1

]∣
∣
∣
∣
∣
ωk

]

+ ρ(1− π)EC(P )(ωk)

= (1− ρ)d(ωk) + ρ
(
πE[P (ωk+1)|ωk] + (1− π)EC(P )(ωk)

)
,

where the second last equality follows from the Law of Iterated Expectations, and the final equality

uses the first equality with ωk+1 in place of ωk.

B Proof of Theorem 2 and Proposition 3

We provide a unified proof of Theorem 2 and Proposition 3 that also covers the setting from

Appendix A.1. In each case, we let m∆(ω, ω
′) denote the population-average belief about transition

probabilities. The functional form of m∆(ω, ω
′) for the setting from Appendix A.1 (that covers the

categorization from Section 4) is given by (9), while for the setting from Section 5, m∆ is given by

(7) and (8).

Define a binary relation R on Ω by ωRω′ if lim∆→0m∆(ω, ω
′)/∆ = ∞. Let ∼ denote the

transitive closure of R, and note that ∼ is reflexive and symmetric.4 Then ∼ is an equivalence

relation and hence corresponds to a partition of Ω into aggregate categories. Let C denote this

partition, with a typical element C ⊂ Ω. We write C(ω) to denote the aggregate category in C

containing ω.

4For the setting from Appendix A.1, symmetry of ∼ follows from the symmetry of the similarity functions.
Symmetry of ∼ is trivial for the setting from Section 5 since ω ∼ ω′ for all ω,ω′

∈ Ω.
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For the setting from Appendix A.1, two states ω and ω′ lie in the same aggregate category if

and only if there exists a sequence ω1, . . . , ωr of states such that ω = ω1, ω
′ = ωr, and for each

ℓ = 1, . . . , r−1, gn(ωℓ+1, ωℓ) > 0 for some group n ∈ {1, . . . , N}. Aggregate categorization is trivial

for the setting from Section 5; all states ω ∈ Ω lie in the same aggregate category.

Given an aggregate category C, for each ∆ let m̃∆ denote the transition probabilities of the

restriction ofm∆ to C, that is, the probabilities defined on C×C obtained by conditioningm∆(ω, ω
′)

on ω′ ∈ C. Let φ∆
C denote the stationary distribution of m̃∆, and let φC = lim∆→0 φ

∆
C . Note

that for the setting from Section 5, m̃∆ = m∆ since there is just one aggregate category. Let

d(C) = EφC
[d(ω)], and let m be the Markov process on C with transition probabilities

m∆(C,C
′) =

∑

ω∈C,ω′∈C′

φC(ω)m∆(ω, ω
′).

In the special case of coarse categorization from Section 4, φC is simply the stationary distribution

of the true process q restricted to C.5 Thus the process m is is identical to the coarse process q

defined in Section 4.

The following Theorem unifies Proposition 3 and Theorem 2, and extends the latter to the

setting from Appendix A.1. For each ∆, let P∆ ∈ R
Ω be rational expectations prices with respect

to m∆ and d.

Theorem 7. For any ω, ω′ ∈ Ω such that C(ω) = C(ω′), we have

lim
∆→0

P∆(ω)− P∆(ω
′) = 0.

Moreover, prices are given by the rational expectations prices associated with the process m∆(C,C
′)

and dividends d(C) in the limit as ∆ → 0.

Lemma 4. There exists K(η,∆) such that, for each η > 0,

5To see this, note that for each individual i categorizing ω and ω′ together, the limiting transition probability
mi

∆(ω,ω′) from ω to ω′ is proportional to the stationary distribution mass assigned to ω′. Hence the stationary
distribution of q restricted to C is also stationary with respect to each individual belief mi

∆(ω, ω′). Aggregating
across individuals gives the claim.
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1. for each ∆ > 0 and ω ∈ C,

1

K(η,∆)

K(η,∆)−1
∑

k=0

‖m̃k
∆(ω, ·) − φC

∆‖ < η,

where ‖·‖ is the 1-norm and m̃k
∆ are the transition probabilities for k steps of m̃∆; and

2. K(η,∆)∆ → 0 as ∆ → 0.

Proof. We claim that, for each η > 0 and ω ∈ C, there exists K0 such that

‖m̃k
∆(ω, ·)− φC

∆‖ < η/2

for every k ≥ K0, and K0∆ → 0 as ∆ → 0. Since ‖m̃k
∆(ω, ·) − φC

∆‖ ≤ 2 for every k, taking

K(η,∆) = 4K0/η proves the result.

We will show that there exists ε∆ such that (i)

‖m̃k
∆(ω, ·) − φC

∆‖ ≤ 2(1 − ε∆)
k−1 (18)

for every k and ω, and (ii) lim∆→0 ε∆/∆ = ∞. Then, letting

K0(η,∆) = 2 +
log(η/4)

log(1− ε∆)
,

straightforward algebraic manipulation shows that 2(1−ε∆)
k−1 < η/2 for every k ≥ K0, as needed.

Moreover, K0(η,∆)∆ → 0 as ∆ → 0 since lim∆→0∆/ log(1− ε∆) → 0 by (ii).

Existence of ε∆ satisfying (i) and (ii) follows from Corollary 1.2 of Hartfiel (1998). The corollary

implies that if there exist δ∆ ≥ 0 and L such that m̃L
∆(ω, ω

′) ≥ δ∆ for all ω and ω′, then

‖m̃k
∆(ω, ·) − φC

∆‖ ≤ 2(1 − δ∆)
k
L
−1

for every k > 0.

For the setting from Section 5, (18) follows by taking L = 1, δ∆ = minω,ω′ m̃∆(ω, ω
′), and

ε∆ = δ∆.

For the setting from Section 4, (18) follows by taking L = |C|. Notice that m̃
|C|
∆ (ω, ω′) is
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bounded from below by a constant δ independent of ∆. Thus we can choose ε∆ to be 1− (1− δ)
1
L .

Proof of Theorem 7. Let ω ∈ C and rewrite the equation

P (ω) = d(ω)(1 − e−∆) + e−∆Em∆(ω,ω′)[P (ω′)]

defining rational expectations prices as

P (ω) = d(ω)(1 − e−∆) + e−∆ Em∆(ω,ω′)[P (ω′)|ω′ /∈ C]
︸ ︷︷ ︸

f(ω,∆)

Prm∆(ω,ω′)[ω
′ /∈ C]

︸ ︷︷ ︸

εω∆+O(∆2)

+ e−∆ (1− Prm∆(ω,ω′)[ω
′ /∈ C])

︸ ︷︷ ︸

1−εω∆+O(∆2)

Em̃∆(ω,ω′)[P (ω′)]

where εω = lim∆→0 Prm∆(ω,ω′)[ω
′ /∈ C]/∆.6

Using the approximation d(ω)(1 − e−∆) = d(ω)∆ +O(∆2), the last equation can be rewritten

as

P (ω) = d(ω)∆ + f(ω,∆)εω∆+ e−∆(1− εω∆)Em̃∆(ω,ω′)[P (ω′)] +O(∆2).

This can be interpreted as the pricing equation of a process in which the asset pays a dividend

d(ω)∆, with some probability εω∆ the process terminates giving a final payoff f(ω,∆), and with

the remaining probability 1 − εω∆ the process continues to the next trading period, in which the

state will be ω′ ∈ C.

Iterating the last equation for K periods gives

P (ω) =

K−1∑

k=0

e−k∆E

[(
k−1∏

k′=0

(1− εωk′
∆)

)

(d(ωk)∆ + f(ωk,∆)εωk
∆)

]

+ e−K∆E

[(
K−1∏

k′=0

(1− εωk′
∆)

)

P (ωK)

]

+O(K∆2),

where ωk is the state in period k of the Markov process m̃∆ on C starting from ω0 = ω. For any

6The fact that Prm∆(ω,ω′)[ω
′ /∈ C] = εω∆+O(∆2) holds because m∆(ω, ω′) = q∆(ω, ω′) whenever ω and ω′ lie in

different aggregate categories.
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K, we may rewrite the last equation as

1

K
P (ω) =

1

K

K−1∑

k=0

E [(d(ωk) + f(ωk,∆)εωk
)∆]

+
1

K
(1−K∆)E

[(

1−

K−1∑

k′=0

εωk′
∆

)

P (ωK)

]

+O(K∆2). (19)

Taking K = K(η,∆) from Lemma 4 and K0 as in the proof of the lemma, we have

E

[(

1−

K−1∑

k′=0

εωk′
∆

)

P (ωK)

]

= E







1−

K−K0−1∑

k′=0

εωk′
∆−

K−1∑

k′=K−K0

εωk′
∆



P (ωK)





= E

[(

1−

K−K0−1∑

k′=0

εωk′
∆

)

E [P (ωK) | ωK−K0]

]

+O(ηK∆)

= E

[(

1−

K−1∑

k′=0

εωk′
∆

)

E [P (ωK) | ωK−K0]

]

+O(ηK∆).

Substituting into (19) and applying Lemma 4 gives

1

K(η,∆)
P (ω) =

(
dC + [fε]C

)
∆+ (1−K(η,∆)∆)

(
1−K(η,∆)εC∆

) 1

K(η,∆)
PC

+O(η/K(η,∆) + η∆+K(η,∆)∆2), (20)

where xC denotes the average of x(ω) with respect to the stationary distribution of the process

m̃∆.
7 Rearranging yields

P (ω)− PC =
(
dC + [fε]C

)
K(η,∆)∆ +

(
−K(η,∆)−K(η,∆)εC + εCK(η,∆)2∆

)
∆PC

+O(η +K(η,∆)η∆+K(η,∆)2∆2).

Since K(η,∆)∆ → 0 as ∆ → 0, this last equation implies that lim∆→0

(
P (ω)− PC

)
= 0. More

7Note that, although it is omitted from the notation, each of these averages depends on ∆.
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precisely,

P (ω)− PC = O(K(η,∆)∆ + η +K(η,∆)η∆+K(η,∆)2∆2)

= O(K(η,∆)∆ + η).

Taking the average of (20) with respect to the stationary distribution of m̃∆ (which amounts

to replacing P (ω) with PC), dropping a term of order K(η,∆)∆2, and simplifying leads to

1

K(η,∆)

(
K(η,∆)∆ +K(η,∆)εC∆

)
PC =

(
dC + [fε]C

)
∆+O(η/K(η,∆) + η∆+K(η,∆)∆2),

and hence

PC =
dC + [fε]C

1 + εC
+O

(
η

∆K(η,∆)
+ η +K(η,∆)∆

)

.

Recall that, as ∆ → 0, the stationary distribution of m̃∆ approaches φC . It suffices to show that

there exists ∆(η) such that η/ (∆(η)K (η,∆(η))) and K (η,∆(η)) ∆(η) vanish as η → 0. Given

a, b ∈ (0, 1) such that a < b, it suffices to take ∆(η) such that ηb < ∆(η)K (η,∆(η)) < ηa. By

Lemma 4, the upper bound is satisfied for sufficiently small ∆. If the lower bound is not satisfied

for any ∆ > 0 then we can simply replace K(η,∆) with a larger value for a particular ∆ in order

to satisfy both bounds.

C Proof of Proposition 4

Proof. The first-order conditions for the demands αG(ω) of each group G are

∑

ω′

qG(ω, ω′)e−αG(ω)e−∆P (ω′)EG

[

e−w′′

|ω′
] (

−P (ω) +
(
1− e−∆

)
d(ω) + e−∆P (ω′)

)
= 0,

where w′′ =
∑

s∈{k+1,...,k0+n−1} e
−(s−k0)∆αG(ωs)

(
−P (ωs) +

(
1− e−∆

)
d(ωs) + e−∆P (ωs+1)

)
is the

agent’s future gain.

Let q̂G(ω, ω′) = qG(ω, ω′)e−αG(ω)e−∆P (ω′)EG

[

e−w′′
|ω′
]

, and notice that, for both values of

ω, the vectors
(
q̂C(ω, ω′)

)

ω′ and
(
q̂R(ω, ω′)

)

ω′ are collinear. This follows from the first-order

conditions, which indicate that these 2-dimensional vectors are both perpendicular to the vec-
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tor
(
−P (ω) +

(
1− e−∆

)
d(ω) + e−∆P (ω′)

)

ω′ . Therefore, there exist γGω (∆) and a virtual process

q̂∆(ω, ω
′) such that

γGω q̂
G(ω, ω′) = q̂(ω, ω′) for each G,

and P (ω) are rational expectation prices with respect to q̂(ω, ω′), that is,

∑

ω′

q̂(ω, ω′)
(
−P (ω) +

(
1− e−∆

)
d(ω) + e−∆P (ω′)

)
= 0.

The virtual process q̂(ω, ω′) can be partially characterized as follows (recall that the group

populations πG sum up to 1):

q̂(ω, ω′) =
∏

G

[
q̂(ω, ω′)

]πG

=
∏

G

[
γGω q̂

G(ω, ω′)
]πG

=
∏

G

[
γGω
]πG

∏

G

[
qG(ω, ω′)

]πG
∏

G

[

e−αG(ω)e−∆P (ω′)
]πG∏

G

(

EG

[

e−w′′

|ω′
])πG

.

The market clearing condition
∑

G πGα
G = 0 implies that

∏

G

[

e−αG(ω)e−∆P (ω′)
]πG

= 1. To simplify

notation, let xω′ =
∏

G

(

EG

[

e−w′′
|ω′
])πG

and γω =
∏

G

[
γGω
]πG . We have shown that

q̂(ω, ω′) = γωxω′

∏

G

[
qG(ω, ω′)

]πG . (21)

From the equations for rational expectations prices with respect to q̂, we obtain

P (1)− P (0) =
d(1)− d(0)

1 + e−∆

1−e−∆ (q̂(1, 0) + q̂(0, 1))
.

To show the convergence of prices, it suffices to show that q̂(1,0)+q̂(0,1)
∆ diverges as ∆ vanishes (recall

that q̂ depends on ∆).

Let

ϕ̂(ω, ω′) =
q̂(ω, ω′)

q̂(ω, ω)
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for ω 6= ω′. We need to show that
ϕ̂(1,0)

1+ϕ̂(1,0) +
ϕ̂(0,1)

1+ϕ̂(0,1)

∆
(22)

diverges.

By (21), ϕ̂(1, 0) = ϕ(1, 0)y and ϕ̂(0, 1) = ϕ(1,0)
y

where

ϕ(ω, ω′) =

∏

G

[
qG(ω, ω′)

]πG

∏

G

[
qGω,ω

]πG
,

and y = x0/x1. Note that both
ϕ(1,0)

1+ϕ(1,0)

∆ and
ϕ(0,1)

1+ϕ(0,1)

∆ diverge.

Let ϕ = min{ϕ(1, 0), ϕ(0, 1)}. Then (22) is at least
ϕ

1+ϕ

∆ , which diverges.
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