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Abstract
We extend the model of risk sharing with limited commitment (e.g. Kocherlakota, 1996)
by introducing both a private (non-contractible and/or non-observable) and a public
storage technology. We first show that agents’ Euler constraints are violated at the
constrained-efficient allocation of the basic model under general conditions. We then
study a problem where agents’ default and saving incentives are both taken into account.
We show that when the planner and the agents have access to the same intertempo-
ral technology, agents no longer want to store at the constrained-efficient allocation.
The reason is that the planner has more incentive to save, because she internalizes the
positive effect of aggregate assets on future risk sharing by relaxing participation con-
straints. Public storage is positive even when there is no aggregate uncertainty and the
return on storage is below the discount rate. This is in contrast to the case where hidden
income or effort is the deep friction that limits risk sharing (e.g. Cole and Kocherlakota,
2001). We also show that assets remain stochastic whenever only moderate risk sharing
is implementable in the long run, but become constant if high but still imperfect risk
sharing is the long-run outcome. However, if the return on the intertemporal technolgy
is as high as the discount rate, perfect risk sharing is always self-enforcing in the long
run. Further, higher consumption inequality implies higher public asset accumulation.
In terms of consumption dynamics, we overturn three counterfactual predictions of the
basic limited commitment model. In particular, the amnesia and persistence properties
do not hold in our model when assets are stochastic in the long run. Further, agents’
Euler inequalities hold by construction.
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1 Introduction

In the existing models of risk sharing with limited commitment, agents’ incentive to deviate
from the constrained-efficient allocation by saving is ignored. At the same time, it has been
shown that hidden storage reduces risk sharing in environments with private information
frictions, see Allen (1985), Cole and Kocherlakota (2001), and Ábrahám, Koehne, and Pavoni
(2011). To our knowledge, only observable and contractable saving has been considered
in the limited commitment framework, see Ligon, Thomas, and Worrall (2000). In that
environment, the optimal allocation is conditioned on individual asset holdings, while this is
not possible when savings are hidden.

In several economic contexts where the model of risk sharing with limited commitment
has been applied, agents are likely to have a way to save, using some ‘backyard’ technology
or simple storage. In the context of village economies (Ligon, Thomas, and Worrall, 2002),
households may keep grain or cash around the house for self-insure purposes. Households in
the United States (Krueger and Perri, 2006) may keep savings in cash or ‘hide’ their assets
abroad. Spouses within a household (Mazzocco, 2007) may also keep savings for personal use.
In all these examples the amount of private savings is not observable and/or contractible.

This paper extends the literature on risk sharing with limited commitment by introduc-
ing a private (non-contractible and/or non-observable) storage technology that agents have
access to, as well as a public storage technology. Our starting point is the two-sided lack
of commitment framework of Kocherlakota (1996), that we will often refer to as the basic
model hereafter. Agents are infinitely lived, risk averse, and ex-ante identical. They receive
a risky endowment each period. We assume that there is no aggregate uncertainty. Agents
may make transfers to each other in order to smooth their consumption. These transfers are
subject to limited commitment, i.e. each agent must be at least as well off as in autarky at
each time and state of the world.

The storage technology we introduce allows agents to transfer consumption from one
period to the next and earn a net return r.1 Borrowing is not allowed. Access to hidden
storage not only changes the value of autarky, but it may also enlarge the set of possible
deviations along the equilibrium path. That is, agents could default, or store, or both at the
same time or in different periods.

We first study under what conditions agents have an incentive to store at the constrained-
efficient allocation of the basic model when storage yields zero interest. We refer to this

1The return r can take any value such that −1 ≤ r ≤ 1
β − 1, where β is the subjective discount factor. If

r = −1, we are back to the basic model. We say that the storage technology is efficient if r = 1
β − 1.
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intertemporal technology as pure storage. We show that if income takes at least three values,
the possibility of hidden pure storage will affect the constrained-efficient allocation directly,
i.e. agents’ Euler constraints will be violated, whenever the solution is not ‘too close’ to full
insurance. Afterwards, we show that whenever risk sharing is partial, there exists a threshold
return on storage, r̃ < 1

β
− 1, above which the Euler constraint binds at the constrained-

efficient allocation. This means that whenever the return on private storage is high enough
(where some r ≤ 0 can be high enough), and the basic limited commitment model exhibits
relatively little risk sharing, the constrained-efficient allocation in the basic model is not
incentive compatible if agents have access to hidden storage. In other words, hidden storage
matters under general conditions.2 The key intuition is that, in the constrained-optimal
allocation, agents with high current income and consumption face a decreasing intertemporal
pattern of consumption. If the return on storage is high enough, this consumption path
cannot be incentive compatible.

Afterwards, we describe our model, where agents’ incentive to default on transfers and
their incentive to save are both taken into account, unlike in the previous literature. This
means that, in addition to the participation/enforceability constraints that make sure that
agents will not default, the Euler inequalities of both agents become constraints to rule
out deviations by storage, under the first-order condition approach.3 We allow the social
planner to save using the same intertemporal technology as the agents. Without allowing
the social planner to store, the feasible set may be empty when agents have access to storage
in autarky. Public savings are also relevant for applications. Think of community grain
storage facilities in developing countries or the European Financial Stability Facility and the
proposed European Stability Mechanism for the euro area. In the rest of this paper, we focus
on the constrained-efficient allocations in this environment.

With agents’ Euler inequalities as constraints, the temporary Pareto weights (Marcet and
Marimon, 2011) or promised utilities (Abreu, Pearce, and Stacchetti, 1990) are no longer
sufficient statistics to summarize the past history of income realizations. In models with a
dynamic moral hazard problem, hidden storage can be accommodated in a recursive manner
using the agent’s marginal utility as a co-state variable (Werning, 2001; Ábrahám and Pavoni,
2008). In our environment, this approach would raise serious tractability issues, because we
would need two more continuous co-state variables, in addition to keeping track of individ-

2Note that this result does not hinge on how exactly agents’ outside option is specified. In particular,
they may or may not be allowed to store in autarky, and they may or not face additional punishment for
defaulting.

3We will later show that the first-order condition approach is valid.
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ual asset holdings and the co-state variable needed to make the participation constraints
recursive.

Instead of adding these state variables, we analyze the social planner’s problem ignoring
agents’ Euler constraints. This provides an important result: if the social planner’s Euler
constraint is satisfied, which is a necessary condition of optimality, agents no longer have
an incentive to save. Therefore, the solution of this simpler problem is identical to the one
where agents have a hidden storage opportunity. In other words, hidden storage no longer
matters. The intuition behind this result is that the planner has more incentive to save than
the agents. First, the planner stores for the agents thereby eliminating their incentives to
use the hidden intertemporal technology, and second, storage by the planner makes it easier
to satisfy agents’ participation constraints in the future. This is due to the fact that, by
increasing assets, the planner increases total future consumption available for agents if they
stay in the risk sharing arrangement. Since agents are excluded from the benefits of the
public asset after default, the higher the amount of accumulated public assets is, the lower
agents’ incentives to default are. In other words, the planner internalizes the positive effect
of aggregate assets on future risk sharing, while the agents do not.

It follows that whenever hidden storage matters, i.e. agents Euler constraints are violated
at the constrained-efficient solution of the basic model with storage in autarky, the social
planner uses the available storage technology, at least when income inequality is highest.
This happens even though there is no aggregate uncertainty and the storage technology is
inferior, i.e. the return on storage is lower than the discount rate (or, β(1 + r) < 1). Storage
by the planner makes the market more complete in this environment. Note that this is in
contrast to the case where private information is the deep friction that limits risk sharing
(Cole and Kocherlakota, 2001; Ábrahám and Pavoni, 2008). There, storage by the planner
would worsen the information revelation problem, therefore it does not occur in equilibrium.

We further show that whenever hidden storage matters in the basic model with storage
in autarky, the stock of public assets is sometimes nonzero and is bounded in the long run.
If β(1 + r) < 1, assets remain stochastic in the long run if risk sharing is considerably limited
in the sense that participation constraint of each agent binds at more than one income level.
We show that in this case there exists an ergodic distribution of assets, that may or may
not include zero. Otherwise, assets converge to a strictly positive finite value. Further, given
inherited assets, storage will always be higher when cross-sectional consumption inequality
is higher. This pattern holds for short-run asset dynamics in general, i.e. also when assets
are constant in the long run. The intuition for these results is that the planner’s (and

4



agents’) saving incentives depend on the consumption distribution. Whenever each agent’s
participation constraint binds for more than one income level in the long run, these incentives
vary over time as the consumption distribution varies over time. This is not true when the
participation constraint binds only at the highest income level for each agent, hence assets
converge to a steady-state level in that case. If β(1 + r) = 1, it is optimal for the planner
to fully complete the market by storage in the long run. That is, perfect risk sharing is
self-enforcing in the long run in this case. This is because the trade-off between imperfect
insurance and an inefficient intertemporal technology is no longer present.

The introduction of storage has interesting implications for the dynamics of consumption
predicted by the model. First, the amnesia property, i.e. that the consumption distribution
only depends on the current income of the agent with a binding participation constraint
and is independent of the past history of shocks whenever a participation constraint binds
(Kocherlakota, 1996), does not hold when assets are stochastic in the long run. The intuition
behind this result is that the current consumption distribution depends on both current
income and inherited assets, even when a participation constraint binds. In other words, the
past history of income realizations affects current consumptions through aggregate assets.

Second, the persistence property of the basic model, i.e. that the consumption allocation
does not change for ‘small’ changes in the income distribution, does not hold either when
assets are stochastic in the long run. Even though the sharing rule determining the consump-
tion allocation is the same as in the previous period when neither participation constraint
binds, consumption is only constant if net savings are identical in the previous and the current
period. This does not happen when assets are stochastic in the long run.s

Data on household income and consumption support neither the amnesia, nor the strong
persistence property of the basic model (see Broer (2011) for an extensive analysis). Hence,
these differences are steps in the right direction for this framework to explain consumption
dynamics.

Third, the Euler constraint, at least in its inequality form, cannot be rejected in micro data
from developed economies once labor supply decisions and demographics are appropriately
accounted for (Attanasio, 1999). Since in our model the agents’ Euler inequalities are satisfied
by construction, we bring limited commitment models in line with this observation as well.

In this paper, we also propose an algorithm to solve the model numerically. Using our
algorithm, we present some computed examples to illustrate the effects of the availability of
storage on risk sharing. We also investigate the consequences of changing the discount factor
and the return on storage on the dynamics of assets and consumption. We, however, leave
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studying the quantitative implications of storage for the dynamics of consumption to future
work.

The rest of the paper is structured as follows. Section 2 introduces and characterizes the
basic model without access to any intertemporal technology. Section 3 studies whether and
under what conditions Euler constraints are binding at the constrained-efficient allocation of
the basic model. Section 4 introduces hidden and public storage and derives the main results
of the paper. Section 5 presents some computed examples. Section 6 concludes.

2 The basic model without storage

We consider an endowment economy with two types of agents, i = {1, 2}, each of unit
measure, who are infinitely lived and risk averse. All agents are ex-ante identical in the
sense that they have the same preferences and are endowed with the same exogenous random
income process. Agents in the same group are ex-post identical as well, meaning that their
income realizations are the same at each time t.4

Let u() denote the utility function, that is strictly increasing, strictly concave, and con-
tinuously differentiable. Assume that the Inada conditions hold.

Let st denote the income state realized at time t and st the history of income realiza-
tions, that is, st = (s1, s2, ..., st). Given st, agent 1 has income y(st), while agent 2 has
income equal to (Y − y(st)), where Y is aggregate income. Note that there is no aggregate
uncertainty by assumption. We further assume that income has a discrete support, that
is, st ∈

{
s1, . . . , sj, . . . , sN

}
with y(sj) < y(sj+1), and is independently and identically dis-

tributed (i.i.d.), that is, Pr (st = sj) = πj, ∀t. The two types of agents framework together
with the no aggregate uncertainty assumption imposes some symmetry on both the income
realizations and the probabilities. In particular, y(sj) = Y − y(sN−j+1) and πj = πN−j+1.
The i.i.d. assumption can be relaxed as long as weak positive dependence is maintained,
i.e. the expected net present value of future lifetime income is weakly increasing in current
income.

Suppose that risk sharing is limited by two-sided lack of commitment to risk sharing
contracts, i.e. insurance transfers have to be voluntary, or, self-enforcing, as in Thomas and
Worrall (1988), Kocherlakota (1996), and others. Each agent may decide at any time and
state to default and revert to autarky. This means that only those risk sharing contracts
are sustainable which provide a lifetime utility at least as great as autarky after any history

4We will refer to agent 1 and agent 2 below. Equivalently, we could say type-1 and type-2 agents, or agent
belonging to group 1 and group 2.
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of income realizations for each agent. We assume that the punishment for deviation is
exclusion from risk sharing arrangements in the future. This is the most severe subgame-
perfect punishment in this context. In other words, it is an optimal penal code in the sense
of Abreu (1988).

The constrained-efficient risk sharing contract is the solution to the following optimization
problem:

max
ci(st)

2∑
i=1

λi

∞∑
t=1

∑
st

βt Pr
(
st
)
u
(
ci
(
st
))
, (1)

where λi is the (initial) Pareto-weight of agent i, β is the discount factor, Pr(st) is the
probability of history st occurring, and ci (st) is the consumption of agent i when history st

has occurred; subject to the resource constraints,

2∑
i=1

ci
(
st
)
≤ Y, ∀st, (2)

and the participation constraints,

∞∑
r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r)) ≥ Uau
i (st) ,∀st,∀i, (3)

where Pr(sr | st) is the conditional probability of history sr occurring given that history st

occurred up to time t, and Uau
i (st) is the expected lifetime utility of agent i when in autarky

if state st has occurred today. In mathematical terms,

Uau
1 (st) = u (y(st)) +

β

1− β

N∑
j=1

πju
(
y(sj)

)
(4)

and

Uau
2 (st) = u (Y − y(st)) +

β

1− β

N∑
j=1

πju
(
y(sj)

)
.

Note that the main qualitative results would remain the same under different punishments as
long as the strict monotonicity of the autarky value is maintained. For example, agents could
save in autarky (as in Krueger and Perri, 2006), or they might endure additional punishment
for defaulting from the community (as in Ligon, Thomas, and Worrall, 2002).

2.1 Characterization of the basic model

This model has been well studied in the literature. We briefly derive and describe the main
characteristics, in particular those which turn out to be important for our analysis of the
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interaction between limited commitment and hidden storage. Our characterization is based
on the recursive Lagrangian approach of Marcet and Marimon (2011). However, the same
results can be obtained using the promised utility approach (see a textbook description in
Ljungqvist and Sargent, 2004).

Let βt Pr (st)µi (s
t) denote the Lagrange multiplier on the participation constraint, (3),

and let βt Pr (st) γ (st) be the Lagrange multiplier on the resource constraint, (2), when
history st has occurred. Then, the Lagrangian can be written as

L =
∞∑
t=1

∑
st

βt Pr
(
st
){ 2∑

i=1

[
λiu
(
ci
(
st
)) ∞∑

t=1

+µi
(
st
)( ∞∑

r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r))− Uau
i (st)

)]

+γ
(
st
)(

Y −
∑
i

ci
(
st
))}

.

Using the ideas of Marcet and Marimon (2011), we can write the Lagrangian in the form

L =
∞∑
t=1

∑
st

βt Pr
(
st
){ 2∑

i=1

[
Mi

(
st
)
u
(
ci
(
st
))
− µi

(
st
)
Uau
i (st)

]
+γ
(
st
)(

Y −
∑
i

ci
(
st
))}

,

where Mi (s
t) = Mi (s

t−1) + µi (s
t) and Mi (s

0) = λi.
The necessary first-order condition5 with respect to agent i’s consumption when history

st has occurred is
∂L

∂ci (st)
= Mi

(
st
)
u′
(
ci
(
st
))
− γ

(
st
)

= 0.

Combining such first-order conditions for agent 1 and agent 2, we have

x
(
st
)
≡ M1 (st)

M2 (st)
=
u′ (c2 (st))

u′ (c1 (st))
. (5)

Here x (st) is the temporary Pareto weight of agent 1 relative to agent 2.6 Defining υi (st) =

µi (s
t) /Mi (s

t) and using the definitions of x (st) andMi (s
t), we can obtain the law of motion

of x as
x
(
st
)

= x(st−1)
1− υ2 (st)

1− υ1 (st)
. (6)

5Under general conditions, these conditions are also sufficient together with the participation and resource
constraints.

6To reinforce this interpretation, notice that if no participation constraint binds in history st for either
agent, i.e. µ1 (sτ ) = µ2 (sτ ) = 0 for all subhistories sτ ⊆ st, then x (st) = λ1/λ2 is the initial relative Pareto
weight of agent i.
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Notice that given c2 (st) = Y − c1 (st), the strict concavity of the utility function im-
plies that both consumption levels are uniquely determined by x (st) defined in equation (5).
In particular, we have that c1 (st) is a strictly increasing function of x (st). Note also that
whenever neither agent’s participation constraint binds, i.e. υ1 (st) = υ2 (st) = 0, then the
temporary relative Pareto weight, x, and consequently the consumption levels, remain con-
stant. This implies that for ‘small’ changes in the income distribution which do not trigger a
binding participation constraint the consumption allocation does not respond. This property
is often called an extreme form of persistence.

In contrast, when a participation constraint binds, the relative Pareto weight is adjusted.
In particular, the relative position of the agent with a binding constraint will improve, i.e.
υ1 (st) > 0 implies x (st) > x(st−1), and υ2 (st) > 0 implies x (st) < x(st−1). Moreover, notice
that at this point we jump to a new relative Pareto weight which makes him just indifferent
between defaulting or not given his current level of income. It is easy to see that this relative
Pareto weight only depends on his current income and not the past history. This implies
that when the Pareto weights, and hence consumptions, change between periods, the new
levels are solely determined by the income level of the agent whose participation constraint
is currently binding. The literature often refers to this property as amnesia.

The solution of the model is fully characterized by a set of state-dependent intervals on
the relative Pareto weight, x, which give the possible relative weights in each income state
for agent 1. Denote the interval for state sj by

[
xj, xj

]
. xj is defined as the lowest relative

Pareto weight such that agent 1, with income y(sj), is willing to stay in the risk sharing
arrangement, and xj is the highest relative Pareto weight such that agent 2, with income
(Y − y(sj)), is indifferent between participating and defaulting. In other words, at the lower
limit of these intervals agent 1’s participation constraint is binding, while at the upper limit
agent 2’s participation constraint is binding.

Denote by xt the new relative Pareto weight of agent 1 to be found at time t. Suppose
that last period the ratio of marginal utilities was xt−1, and today the income state is sj.
The relative weight of agent 1 today is determined by the following updating rule:

xt =


xj if xt−1 > xj

xt−1 if xt−1 ∈
[
xj, xj

]
xj if xt−1 < xj

. (7)

This means that the ratio of marginal utilities is kept constant for any two agents whenever
this does not violate the participation constraint of either of them. When the participation
constraint binds for agent 1, the relative Pareto weight moves to the lower limit of the opti-
mal interval, just making sure that this agent is indifferent between staying and defaulting.
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Similarly, when agent 2’s participation constraint binds, the relative Pareto weight moves to
the upper limit of the optimal interval. Thereby it is guaranteed that as much risk sharing
as possible is achieved while satisfying the participation constraints.

Given that consumption of agent 1 is a strictly increasing function of x, exactly the same
characterization holds for consumption dynamics. Hence, next we analyze the dynamics of
consumption directly. Define the limits of the optimal consumption intervals as

cj : xj =
u′
(
Y − cj

)
u′
(
cj
) and cj : xj =

u′ (Y − cj)
u′ (cj)

.

It is easy to see that, unless autarky is the only implementable allocation, we have that
cj > cj, for some j.7 Moreover, given that the value of autarky is increasing in current
income (see (4)), it is easy to see that cj > cj−1 and cj > cj−1, for all 1 < j ≤ N . Finally,
note that symmetry implies that cj = cN−j+1. The proofs of all these statements can be
found in Ljungqvist and Sargent (2004).

Given these results, we will illustrate the dynamics of consumption using a graphical
representation. We will focus on scenarios where the long-run equilibrium is characterized
by imperfect risk sharing. We do this both because there is overwhelming evidence from
several applications (households in a village or in the United States, spouses in a household,
countries) about less than perfect risk sharing, and because that case is theoretically not in-
teresting, as it is equivalent to the well-known (unconstrained) efficient allocation of constant
individual consumptions over time. Using our notation, perfect risk sharing is obtained in
the long run if x1 ≥ xN , or, equivalently, if c1 ≥ cN . In other words, if there exists a Pareto
weight where neither agent’s participation constraint is violated for all income states.

Hence, we assume from now on that c1 < cN , i.e. risk sharing is imperfect in the long run.
It is not difficult to see that the law of motion described by (7) will imply that risk sharing
arrangements subject to limited commitment are characterized by a finite set of consumption
values determined by the limits of the optimal consumption intervals. It turns out that, for
both the benchmark model and our model with hidden storage, considering two distinct
scenarios is enough to describe the general picture: (i) each agent’s participation constraint
is binding only when his income is highest, and (ii) each agent’s participation constraint is
binding in more than one state. Further, to describe the constrained-efficient allocations in
these two scenarios, it is sufficient to consider three income states, i.e. N = 3.

7If in autarky agents simply consume their current income every period, then some risk sharing implies
cj > cj , ∀j. If storage is allowed in autarky, then it might be that no transfer is made when cross-sectional
income inequality is high, but insurance transfers do occur in states when inequality is low.
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Consider an endowment process where each agent gets yh, ym, or yl units of the consump-
tion good, with yh > ym > yl, with probabilities πh, πm, and πl, respectively. Symmetry
implies that ym = (yh +yl)/2 and πe ≡ πh = πl = (1−πm)/2, where the upper index e refers
to the most extreme, i.e. most unequal, income distribution. We will refer to a state sj when
agent 1 has income yj.

Given the utility function and the income process, the intervals for different states may
overlap or not depending on the discount factor, β. If β is sufficiently large, then perfect risk
sharing is self-enforcing by a standard folk theorem (Kimball, 1988). In this case, cl ≥ ch,

and perfect risk sharing is implementable in the long run. If β is sufficiently small, there does
not exist any non-autarkic allocation that is sustainable with voluntary participation. In this
case, each consumption interval collapses to one point, yj, j = {l,m, h}. For intermediate
levels of the discount factor, partial insurance occurs.

If partial insurance occurs, there are two possible scenarios depending in the level of the
discount factor. For higher levels of β, cm ≥ ch > cl ≥ cm. This means that the consumption
interval for state sm overlaps with the intervals associated with both the sh and the sl state.
This is the case where each agent’s participation constraint binds for the highest income level
only. Figure 1 presents an example satisfying these conditions.

Suppose current consumption of agent 1 is below ch. When agent 1 draws a high income
realization (which occurs with probability 1 in the long run), his consumption jumps to ch.
Then it stays at that level until his income jumps to the lowest level. At that period, agent
2’s participation constraint binds, because he has high income, and consumption of agent 1

will drop to cl. Then we are back to where we started from. This implies that consumption
takes only two values, ch and cl in the long run. When consumption changes, it always moves
between these two levels, and the past history of income realizations does not matter. This
is the way the aforementioned amnesia property presents itself in this case.

When state sm occurs after state sh or state sl, the consumption allocation remains
unchanged. That is, consumption does not react at all to this ‘small’ change in income. This
is the aforementioned persistence property. Note that consumption also remains unchanged
over time if the sequence (h,m, h) or the sequence (l,m, l) takes place.

Another key observation here is that, although individuals face consumption changes over
time, the consumption distribution is constant over time. In every period, half of the agents
consume ch and the other half consume cl. Finally, note that exactly this case occurs for any
N if c2 ≥ cN > c1 ≥ cN−1.

For lower levels of β, none of the three intervals overlap, i.e. ch > cm > cm > cl. Figure 2
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Figure 1: The interval for state sm overlaps with the intervals for state sh and state sl

shows an example of this second case. When all three intervals are disjunct, consumption
takes four values in the long run. To see this, notice that the participation constraint of agent
1 binds both for medium and high level of income. That is, whenever his income changes his
consumption will change as well, and similarly for agent 2.

In this second case, in state sm the past history determines which agent’s participation
constraint binds, therefore consumption is Markovian. Current incomes and the identity of
the agent with a binding participation constraint fully determine the consumption allocation.
The dynamics of consumption exhibit amnesia in this sense here. Further, consumption
responds to every income change, hence the persistence property does not manifest itself.

The key observation for later reference is that the consumption distribution changes be-
tween {cm, cm} and

{
cl, ch

}
. That is, the cross-sectional distribution of consumption is

different whenever state sm occurs from when an unequal income state, sh or sl, occurs. If
there are N > 3 income states, the cross-sectional consumption distribution changes over
time whenever c2 < cN and c1 < cN−1. Depending on the number of income states and
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Figure 2: The state-dependent intervals are all disjunct

the number of states where a participation constraint binds, the persistence property may
appear.

3 Does hidden storage matter?

In this section, we study whether and under what conditions agents would save at the
constrained-efficient solution of the basic model. We assume that partial insurance occurs
at the solution (the interesting case). If Euler constraints are violated, the solution is not
robust to deviations when hidden storage is available. We first study the case where the
intertemporal technology is pure storage, defined as an intertemporal technology that yields
zero interest. Then, we consider the other benchmark case where the interest rate is as high
as the rate of time preference, i.e. β(1 + r) = 1, as well as the general case of any return on
storage.
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3.1 Pure storage

When the available intertemporal technology is pure storage, i.e. r = 0, we study the two
cases we have identified in the previous section: (i) only two consumption levels occur in the
long run, i.e. the level of risk sharing is high, and (ii) a participation constraint binds for
more than one income level for each agents, or, more than two consumption levels occur in
equilibrium, i.e the level of risk sharing is more moderate. We show that they are indeed
qualitatively different, as hidden pure storage will matter in the latter but not in the former
case.

3.1.1 Two consumption levels in the long run

Assume that we are in a situation where, although income can take N values, the optimal
allocation of the basic model features only two levels of consumption, ch > cl. This means
that a participation constraint binds only when income inequality is highest. In particular,
if the agent’s current consumption is ch, then it remains ch as long as the other agent’s
income does not reach the highest level. This happens when agent 1’s income level is lowest.
Hence, the probability of switching to cl is equal to the probability of the lowest income
state, denoted again by πe. Therefore, given that an agent’s consumption is ch today, πe

is the probability of switching to cl, and (1 − πe) is the probability that his consumption
remains ch.

It is easy to see that agents would have an incentive to save/store only if they have high
consumption today, because at that point they face a consumption profile which is weakly
decreasing. Hence, hidden storage matters at the constrained-optimal allocation if agents’
Euler constraints are violated when they consume ch, that is, if we have

u′(ch) < β
[
(1− πe)u′(ch) + πeu′(cl)

]
. (8)

Given that cl = Y − ch, it is clear that there exists a level of high consumption, ĉh, where
(8) is satisfied with equality:

u′(ĉh) = β
[
(1− πe)u′(ĉh) + πeu′(Y − ĉh)

]
. (9)

This is the case, because, on the one hand, as ch is approaching Y/2 (and consequently cl),
the left hand side of inequality (8) is higher, given β < 1. On the other hand, as ch is getting
close to Y (and consequently cl to 0), the right hand side of inequality (8) is higher, because
limcl→0 u

′(cl) = −∞ by the relevant Inada condition. Hence, agents would like to use the
pure storage technology in equilibrium if and only if ch > ĉh. In what follows we will show
that this never happens.
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In order to do this, we first show that ĉh is also the level of high consumption which
provides the highest life-time utility, given that the agent starts with high consumption.

Lemma 1. ĉh maximizes welfare for the agent with high consumption today across all possible
consumption values if consumption takes only two values.

Proof. The expected lifetime utility of an agent who receives the high consumption, denoted
by θh, at time t is

V
(
θh
)

= u
(
θh
)

+
∞∑
τ=1

βτ
[
Pr
(
ct+τ = θh

)
u
(
ch
)

+
(
1− Pr

(
ct+τ = θh

))
u
(
Y − θh

)]
= u

(
θh
)

+ V
(
θh
) [
β(1− πe) +

∞∑
τ=2

βτ (πe)2(1− πe)τ−2

]

+ u
(
Y − θh

) ∞∑
τ=1

βτπe(1− πe)τ−1.

Then, V
(
θh
)
can be expressed as

V
(
θh
)

=
1

1− β
(1− β(1− πe))u

(
θh
)

+ βπeu
(
Y − θh

)
1− β(1− 2πe)

.

The level of consumption, denoted by c̃h, which maximizes her lifetime utility is given by

c̃h = arg max
θh

1

1− β
(1− β(1− πe))u

(
θh
)

+ βπeu
(
Y − θh

)
1− β(1− 2πe)

.

The necessary and sufficient first-order condition for this problem is

u′(c̃h) = β
[
(1− πe)u′(c̃h) + πeu′(Y − c̃h)

]
. (10)

Comparing (9) and (10) the result follows.

Given this result, it is intuitive that it should never be optimal to implement any con-
sumption level higher than ĉh = c̃h. The following proposition proves this statement formally.

Proposition 1. If consumption takes only two values in the long run at the solution of the
basic model, then agents have no incentive to use a pure storage technology.

Proof. The proof is by contradiction. Assume that ch > c̃h. Then we can construct an alter-
native allocation which makes both agents better off and does not violate any participation
constraint. The alternative contract is given by c̃h. By construction, this level of consump-
tion makes the agent with high consumption today better off, since c̃h maximizes his lifetime
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utility. The agent with low consumption is also clearly better off, because he enjoys both
higher consumption currently, since ch > c̃h implies that Y − c̃h > Y − ch, and a reduction of
risk in the future, since the allocation (ch, Y − ch) is a mean preserving spread of (c̃h, Y − c̃h).
We have increased the lifetime utility of both agents, therefore the participation constraints
cannot be violated. This implies that we cannot have a constrained-efficient allocation such
that ch > c̃h. Then Lemma 1 and equation (9) imply that agents will not have an incentive
to use a pure storage technology.

Proposition 1 means that the optimal allocation will always implement such a low level of
consumption variation that agents will have no incentive to use a pure storage technology. It
is worth noting that the N = 2 case will always fall into this category, because there cannot
be more than two levels of consumption in the long-run equilibrium. Second, as we discussed
above, more generally this case represents risk sharing situations where a considerable amount
of risk sharing is achieved. Proposition 1 shows that this amount of risk sharing is sufficient
to eliminate agents’ storage incentives, and assets are at their first-best level, zero, in this
environment with no aggregate risk.

3.1.2 More than two consumption levels in the long run

Let us now consider the case where the participation constraint binds for at least two income
levels for each agent. Considering three income states is sufficient to derive our main result.
We use the notation which was introduced in Section 2. The key assumption here is that
a participation constraint is binding in the intermediate state sm as well, in addition to the
extreme states, sh and sl, in the long-run equilibrium, see Figure 2.

Consider now the following hypothetical consumption allocation: the high (low) income
agent consumes θh (Y − θh) and in state sm both agents consume ȳ = Y/2. Let us now
define ĉh as the high consumption level for which the agent’s Euler holds with equality if he
consumes θh, ȳ, and Y − θh in states sh, sm, and sl, respectively. In mathematical terms, ĉh

is the solution to
u′(ĉh) = β

[
πeu′(ĉh) + πmu′(ȳ) + πeu′(Y − ĉh)

]
. (11)

Note that this also means that agents would use the pure storage technology in autarky as
long as yh > ĉh. Similarly, let us now define c̃h as the high consumption level that maximizes
the lifetime utility of this agent. The first-order condition that characterizes c̃h is

u′(c̃h) = β
[
πeu′(c̃h) + πeu′(Y − c̃h)

]
. (12)

The following lemma will be useful to establish whether the Euler constraint may bind
at the solution of the basic model with three income states.
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Lemma 2. ĉh < c̃h when income takes three values.

Proof. It is enough to verify that the Euler inequality is not satisfied at c̃h. The right hand
side of equation (11) includes an additional positive term, πmu′(ȳ), compared to equation
(12), thus the Euler constraint is violated at c̃h.

Note that this result differs from what we have found in the case where consumption takes
only two values. In particular, agents would use the intertemporal technology not just for
consumption levels above the level that yields the maximum lifetime utility, c̃h, but also below
it as long as θh > ĉh. Using this result for the consumption process

(
θh, πe; ȳ, πm;Y − θh, πe

)
,

we can now state the main result of this subsection.

Proposition 2. Assume that income takes three values, partial insurance occurs, and yh is
sufficiently close to c̃h. Then, the Euler constraint binds at the constrained-efficient solution
of the basic model, even when the intertemporal technology yields no interest.

Proof. Partial insurance occurs if yh > c̃h and Uau(sh) > u(ȳ)/(1 − β). This follows from
Krueger and Perri (2006), whose results for the two-states case are easy to generalize to three
states. For yh > c̃h close to c̃h, ch < c̃h is in a small neighborhood of c̃h, and consumption in
state sm is in a small neighborhood of ȳ. The result follows from Lemma 2 by continuity.

It is natural that, if for some high consumption level agents would deviate from the
constrained-efficient allocation by using the pure storage technology, then this happens when
the solution is close to autarky, i.e. when state-contingent insurance transfers are small, and
agents bear a lot of consumption risk.

This result concerning pure storage is interesting because it is hard to exclude that such
a technology is available to agents in several economic contexts that the risk sharing with
limited commitment model has been applied to. For example, think of households in poor
villages or members of a household who can hide grain or cash.

3.2 Storage with any return

In this section we first consider the benchmark case where agents have access to an efficient
intertemporal technology, i.e. storage earns a return r such that β(1+r) = 1. Afterwards, we
study the general case. As above, we only examine whether agents would use the available
hidden intertemporal technology at the constrained-efficient solution of the basic model. We
do not make any assumption about the number of income states, except that income may
take a finite number of values, and the support of the income distribution is bounded.
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Lemma 3. Suppose that partial insurance occurs and the hidden storage technology yields a
return r such that β(1 + r) = 1. Then the Euler constraint is violated at the constrained-
efficient allocation when an agent receives the highest possible income, yN .

Proof. If partial insurance occurs, as opposed to full insurance, then it must be that there
exists some state sj̃ where the agent consumes cj̃ < cN . Then,

u′(cN) <
∑
sj

Pr(sj)u′(cj),

that is, the Euler constraint is violated.

Proposition 3. There exists r̃ < 1/β − 1 such that for all r > r̃, agents’ Euler constraints
are violated at the constrained-efficient allocation of the basic model.

Proof. r̃ is defined as the solution to

u′(cN) = β(1 + r̃)
∑
sj

Pr(sj)u′(cj). (13)

For r̃ close to −1, the right hand side is close to zero. By Lemma 3, the right hand side is
greater than the left hand side if r̃ = 1

β
−1. It is obvious that the right hand side is increasing

in r̃. Therefore, there is a unique r̃ solving equation (13), and agents’ Euler constraint is
violated for higher values of r.

Having established that Euler constraints bind for a sufficiently high r, where ‘high’ can
mean r = 0, in the next section we turn to the general problem to find the constrained-efficient
risk sharing contract satisfying both participation and Euler constraints.

4 The model with storage

In this section, we provide the formulation and analytical characterization of our model with
limited commitment and hidden storage. We add agents’ Euler constraints to the problem
given by the objective function (1) and the constraints (2) and (3). We also modify the
resource constraint to allow the social planner to use the same intertemporal technology as the
agents. We maintain the assumption of no aggregate uncertainty to exclude the precautionary
motive for saving at the aggregate level, and to thus isolate the saving incentive in limited
commitment models due to endogenously incomplete markets.
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The social planner’s problem is

max
{ci(st),B(st)}

2∑
i=1

λi

∞∑
t=1

∑
st

βt Pr
(
st
)
u
(
ci
(
st
))

(14)

s.t.
2∑
i=1

ci
(
st
)
≤

2∑
i=1

yi (st) + (1 + r)B
(
st−1

)
−B

(
st
)
,∀st, (15)

(P1 )
∞∑
r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r)) ≥ Ũau
i (st) ,∀st,∀i, (16)

u′
(
ci
(
st
))
≥ β(1 + r)

∑
st+1

Pr
(
st+1 | st

)
u′
(
ci
(
st+1

))
, ∀st,∀i, (17)

B
(
st
)
≥ 0,∀st. (18)

The social planner chooses the consumption of each agent given any possible history of income
states, ci (st), ∀i, and current gross storage given any possible history of income states, B (st),
and maximizes a weighted sum of agents’ lifetime utilities. The first constraint, (15), is the
resource constraint, where B (st−1) denotes assets inherited from the previous period. The
next constraint, (16), is the participation constraint, where Ũau

i (st) is the value function of
autarky when storage is allowed. Equation (17) is agents’ Euler constraint. Finally, (18) is
the planner’s borrowing constraint.

A few remarks are in order about this structure before we turn to the characterization of
constrained-efficient allocations. First, agents can store in autarky, but they lose access to
the benefits of the public asset.8 This implies that Ũau

i (sj) = V au
i (sj, 0), where V au

i (sj, b) is
defined as

V au
i

(
sj, b

)
= max

b′

{
u(yi(s

j) + (1 + r)b− b′) + β
N∑
k=1

πkV au
i

(
sk, b′

)}
, (19)

where b denotes private savings. Since V au
i (sj, 0) is increasing (decreasing) in j for agent 1

(2), it is obvious that if we replace for the autarky value in the basic model introduced in
Section 2 with the one defined here, the same characterization holds, given that a solution
exists.

Second, we allow for public storage exactly in order to assure that a solution exists. In
other words, this assumption makes sure that the feasible set is nonempty. If neither the
social planner nor the agents can store in the optimal contract, but agents can and would
store in autarky, then no feasible solution exists for sufficiently low βs, i.e. when the solution

8This is the same assumption as in Krueger and Perri (2006), where agents lose access to the benefits of
a tree after defaulting.
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of the basic model is ‘close’ to autarky. Note, however, that since the return on public and
private storage is the same, public storage can replicate any allocation which agents can
achieve using private storage. Further, equation (19) implicitly assumes that public storage
does not affect the value of autarky. As mentioned above, when agents default they are
not only excluded from future risk sharing but also from the benefits of the public asset.
This implies that public storage has an additional benefit: it makes default a relatively less
attractive option. Last but not least, public storage is relevant for applications as well. One
example is the existing community grain storage facilities in low-income villages. Another
example is the European Financial Stability Facility and the European Stability Mechanism
(to be launched), which can facilitate risk sharing across countries within the euro area. If a
country left the euro area, it would lose access to these resources.

Third, we use a version of the first-order condition approach (FOCA) here. That is, we
only check single deviations. In particular, we check whether the agent is better off staying
in the risk arrangement or defaulting given that he does not store (condition (16)), and we
check whether he is happy with not storing given that he does not default (condition (17)).
It is not obvious whether these conditions are sufficient.9 In principle, it is possible that
the agent stores in the current period to increase his value of autarky in future periods, and
defaults in a later period. Our constraints do not take such deviations into account. For now
this is an assumption. Given this assumption, we will characterize the solution. Afterwards,
we will show that agents indeed have no incentive to use these more complex deviations in
Section 4.2.

Fourth, both the participation constraints (16) and the Euler constraints (17) involve
future decision variables. Given these two types of forward-looking constraints, a recursive
formulation using either the promised utilities approach (Abreu, Pearce, and Stacchetti,
1990) or the Lagrange multipliers approach (Marcet and Marimon, 2011) is difficult. Euler
constraints have been dealt with in models with moral hazard and hidden storage using the
agent’s marginal utility as a co-state variable, see Werning (2001) and Ábrahám and Pavoni
(2008). In our environment, this could raise serious tractability issues, since we would need
two more continuous co-state variables, in addition to the state variables to keep track of
individual asset holdings.

In this paper, we follow a different approach that avoids these complications. In particular,
we solve the problem ignoring agents’ Euler constraints first. Then we verify that the solution
of the simplified problem satisfies those Euler constraints. That is, instead of Problem P1,

9In fact, Kocherlakota (2004) shows that in an economy with private information and hidden storage the
first-order condition approach can be invalid.
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we solve the following simpler problem:

max
{ci(st),B(st)}

2∑
i=1

λi

∞∑
t=1

∑
st

βt Pr
(
st
)
u
(
ci
(
st
))

(P2 ) s.t.
2∑
i=1

ci
(
st
)
≤

2∑
i=1

yi (st) + (1 + r)B
(
st−1

)
−B

(
st
)
,∀st,

∞∑
r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r)) ≥ Ũau
i (st) ,∀st,∀i,

B
(
st
)
≥ 0,∀st.

Next, we write Problem P2 in a recursive form. Let βt Pr (st)µi (s
t) denote the Lagrange

multiplier on the participation constraint, (16), and let βt Pr (st) γ (st) be the Lagrange mul-
tiplier on the resource constraint, (15), when history st has occurred, as in Section 2. Then,
the Lagrangian is

L =
∞∑
t=1

∑
st

βt Pr
(
st
){ 2∑

i=1

[
λiu
(
ci
(
st
)) 2∑

i=1

+µi
(
st
)( ∞∑

r=t

∑
sr

βr−t Pr
(
sr | st

)
u (ci (s

r))− Ũau
i (st)

)]

+γ
(
st
)( 2∑

i=1

(
yi (st)− ci

(
st
))

+ (1 + r)B
(
st−1

)
−B

(
st
))}

Similarly as for the basic model, we can rewrite the Lagrangian as

L =
∞∑
t=1

∑
st

βt Pr
(
st
){ 2∑

i=1

[
Mi

(
st
)
u
(
ci
(
st
))
− µi

(
st
)
Ũau
i (st)

]
+γ
(
st
)( 2∑

i=1

(
yi (st)− ci

(
st
))

+ (1 + r)B
(
st−1

)
−B

(
st
))}

.

where Mi (s
t) = Mi (s

t−1) + µi (s
t) and Mi (s

0) = λi, as before. This Lagrangian is recursive
with current income realizations, inherited assets, and the relative Pareto weight from last
period serving as state variables, and the current relative Pareto weight and storage serving
as controls.

4.1 Characterization

The first-order condition with respect to agent i’s consumption when history st has occurred
is

∂L

∂ci (st)
= Mi

(
st
)
u′
(
ci
(
st
))
− γ

(
st
)

= 0. (20)
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Combining such first-order conditions for agent 1 and agent 2, and using the definitions of
Mi (s

t) and of x (st), we have

x
(
st
)

=
M1 (st)

M2 (st)
=
u′ (c2 (st))

u′ (c1 (st))
. (21)

Remember that υi (st) = µi (s
t) /Mi (s

t). Then, the law of motion of x is

x
(
st
)

= x(st−1)
1− υ2 (st)

1− υ1 (st)
, (22)

as in the basic model.
The planner’s Euler constraint, i.e. the optimality condition for B (st) is

γ
(
st
)
≥ β(1 + r)

∑
st+1

βt Pr
(
st+1|st

)
γ
(
st+1

)
, (23)

which, using (20), can also be written as

Mi

(
st
)
u′
(
ci
(
st
))
≥ β(1 + r)

∑
st+1

Pr
(
st+1 | st

)
Mi

(
st+1

)
u′
(
ci
(
st+1

))
.

Then, using (21) and (22), the planner’s Euler becomes

u′
(
ci
(
st
))
≥ β(1 + r)

∑
st+1

Pr
(
st+1|st

) u′ (ci (st+1))

1− υi (st+1)
, (24)

where 0 ≤ υi (s
t+1) ≤ 1. Given the definition of υi (st+1) and equation (22), it is easy to see

that (23) represents exactly the same mathematical relationship for both agents. Comparing
the planner’s Euler, (24), to the standard Euler constraints for the agents gives the following
result:

Proposition 4. When the planner’s Euler is satisfied, the agents’ Eulers are satisfied as well.
Therefore, the solution of the model with hidden storage, P1, corresponds to the solution of
the simplified problem, P2.

Proof. The planner’s Euler is (24), while the agents’ Euler is

u′
(
ci
(
st
))
≥ β(1 + r)

∑
st+1

Pr
(
st+1|st

)
u′
(
ci
(
st+1

))
. (25)

The right hand side of (24) is bigger than the right hand side of (25), for i = {1, 2}, since
0 ≤ υi (s

t+1) ≤ 1, ∀st+1. Therefore, (24) implies (25).

Corollary 1. The planner stores in equilibrium whenever an agent’s Euler constraint is
violated at the constrained-efficient allocation of the basic model with storage in autarky.
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Note that the public storage technology is used even though there is no aggregate uncertainty
and the technology is inferior (r < 1/β − 1). Intuitively, this is optimal for two interrelated
reasons. First, given that an agent would have an incentive to store, the planner can eliminate
it by public storage. Note that when an agent has the highest level of consumption, the
planner’s Euler is identical to the agent’s Euler. This is easy to see comparing (24) and
(25). Hence, in this case, the only reason for public asset accumulation is to store for the
high-income agent. This also implies that this will be the only reason for using the available
intertemporal technology in the case with a high level of risk sharing, i.e. where only two
consumption levels occur in the long run.

Second, storage by the planner makes it easier to satisfy the participation constraints next
period, thus it improves risk sharing in the future. This is the case whenever a participation
constraint binds in other states as well, not just when income inequality is highest. Comparing
(24) and (25) again, it is obvious that the planner has more incentive to save than the
agents in the other states. In particular, the presence of 1/ (1− υi (st+1)〉 1 in the planner’s
Euler exactly indicates how increasing assets helps the planner to relax future participation
constraints, and thereby improve future risk sharing.

Given Proposition 4, we can focus on solving problem P2, which will also give us the
solution of problem P1. Next, we introduce some useful notation and show more precisely
the recursive formulation of P2, which we will use to solve the model numerically. Let y
denote the current income of agent 1, and V () denote the value function. The following
system is recursive using X = (y,B, x) as state variables:

x′(X) =
u′ (Y + (1 + r)B −B′(X)− c1(X))

u′ (c1(X))
(26)

x′(X) = x
1− υ2(X)

1− υ1(X)
(27)

u′ (c1(X)) ≥ β(1 + r)
∑
y′

Pr (y′)
u′ (c1(X

′))

1− υ1(X ′)
(28)

u (c1(X)) + β
∑
y′

Pr (y′)V (X ′) ≥ Ũau (y) (29)

u (Y + (1 + r)B −B′(X)− c1(X)) + β
∑
y′

Pr (y′)V (Y − y′, B′, 1/x′) ≥ Ũau (Y − y) (30)

B′(X) ≥ 0. (31)

The first equation, (26), says that the ratio of marginal utilities between the two agents
has to be equal to the current relative Pareto weight, and where we have used the resource
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constraint to substitute for c2(X). Equation (27) is the law of motion of the co-state variable,
x. Equation (28) is the social planner’s Euler constraint, which we have derived above.
Equations (29) and (30) are the participation constraints of agent 1 and agent 2, respectively,
where Ũau (y) = Ũau

1 (sj) and Ũau (Y − y) = Ũau
2 (sj), with y = yj = y1(s

j). Finally, equation
(31) is the planner’s borrowing constraint.

Given the recursive formulation above, and noting that the outside options Ũau (y) and
Ũau (Y − y) are monotone in y and take a finite set of values, the solution can be characterized
by a set of state-dependent intervals, as in the basic model. This is straightforward in the (for
now hypothetical) case of constant and positive level of public savings, B∗ > 0. In this case,
we can repeat the same analysis as in Section 2 with only two differences: (i) the autarky
value is Ũau

i () instead of Uau
i (), and (ii) aggregate consumption is given by Y + rB∗ instead

of Y . This implies that the same updating rule applies as in the basic model, see (7).
In the case where public assets are not constant, the consumption intervals naturally

become a function of the changing level of available aggregate resources, Y + (1 + r)B.
Nevertheless, optimal state-dependent intervals on the relative Pareto weight still characterize
the solution, but they depend on B as well, not just on current income realizations. To see
this, note that we can express the value function in terms of the end of the period relative
Pareto weight and the inherited asset level only. This is without loss of generality because
of equation (27). It follows that the following conditions define the lower and upper bound
of these intervals:

V (yj, xj(B), B) = Ũau
(
yj
)

and V

(
Y − yj, 1

xj(B)
, B

)
= Ũau

(
Y − yj

)
.

Hence, given the inherited Pareto weight, xt−1, and accumulated assets, B, the updating rule
(7) needs to be modified as follows:

xt =


xj(B) if xt−1 > xj(B)
xt−1 if xt−1 ∈

[
xj(B), xj(B)

]
xj(B) if xt−1 < xj(B)

. (32)

Since this updating rule is practically the same as the one for the basic model (compare
(7) and (32)), we can determine the level of risk sharing in this model as well, given B,
by checking how much these intervals overlap. Despite the fact that the transition rules
are remarkably similar to the benchmark case, there is a very important difference: as the
aggregate storage level changes, these intervals also change over time, which implies that we
do not necessary stay at the limits of the optimal intervals even in the long run. To see
this, notice that whenever B′ > B, the relative attractiveness of autarky is reduced, hence
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xj(B) > xj(B′) and xj(B) < xj(B′). This implies that if the income state is the same today
as yesterday, we have that the xj(B′) < xt−1 < xj(B′), thus xt = xt−1, and xt may not be at
the bound of any state-dependent interval given that inherited assets are B′.

4.1.1 The dynamics of aggregate assets

Next, we further characterize the evolution of aggregate assets. Given the law of motion of
the relative Pareto weight defined above, this will not only provide us with the dynamics
of aggregate consumption, but also of individual consumptions. Recall that the only reason
for which the planner saves in the high risk sharing (two consumption levels only) case is
to prevent the high consumption agent from using private storage. In contrast, when risk
sharing is more limited, the participation constraint binds at several levels of income. The
planner’s saving incentives vary across these income levels both because agents’ private saving
incentives vary and because at lower levels of income she has more incentives to save than
the agents in order to relax future participation constraints. The next proposition will show
that this difference is not so important for the short-run dynamics of assets but has very
significant implications for the long-run dynamics.

Before the main proposition, we provide some useful properties of the policy function for
storage. First, notice that (24) implies that the optimal choice of assets is solely determined
by the end of period Pareto weight and inherited assets, hence we can write B′(B, x′). The
following lemma makes this statement more precise:

Lemma 4. B′(sj, B, x) = B′(B, x′). That is, for determining aggregate storage, the current
relative Pareto weight x′ is a sufficient statistic for the current income state, sj, and last
period’s relative Pareto weight, x.

Proof. Once we know x′, equations (26) and (28), which do not depend on x, give c1 and
B′.

The next lemma provides a key property of the aggregate storage decision rule.

Lemma 5. B′(B, x′) is strictly increasing in x′ for x′ ≥ 1 and B′(B, x′) > 0. That is, the
higher cross-sectional consumption inequality is, the higher public asset accumulation is.

Proof. A higher x′ ≥ 1 increases public storage for two complimentary reasons. First, higher
consumption inequality, which is uniquely determined by the current relative Pareto weight
x′, increases the private saving incentive of the agent with high current consumption. To make
sure that the high-consumption agent does not deviate by hidden storage, the planner has
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to save more when x′ > 1 is higher. Second, remember that the planner’s additional saving
incentives come from the fact that she aims to improve risk sharing (reduce consumption
inequality) in the future. A higher x′ > 1 implies higher consumption inequality tomorrow.
To see this, note that three things can happen tomorrow with respect to the pattern of binding
participation constraints: (i) no participation constraint binds tomorrow, thus consumption
inequality remains the same as today, (ii) agent 1’s participation constraint is binding, thus
consumption inequality either remains higher for a higher x′ > 1 or no longer depends on x′

when comparing a higher and a lower x′, and (iii) agent 2 participation constraint is binding,
and either x′′ > 1 and the same cases are possible as for (ii), or x′′ < 1 in which case
consumption inequality tomorrow does not depend on x′. Therefore, to reduce inequality
tomorrow, the planner has higher incentives to save when x′ > 1 is higher as well.

We are now ready to characterize the long-run behavior of aggregate assets.

Proposition 5.

(i) B converges almost surely to a strictly positive constant in the long run whenever the
agents’ Euler constraints are violated at B′ = B = 0 for some income distribution,
r < 1/β − 1, and each agent’s participation constraint binds only when his income is
highest in the long run.

(ii) B is stochastic and bounded in the long run whenever the agents’ Euler constraints are
violated at B′ = B = 0 for some income distribution, r < 1/β − 1, and each agent’s
participation constraint binds in more than one income state in the long run.

(iii) B converges almost surely to a strictly positive constant B̂ in the long run such that
∀B ≥ B̂ perfect-risk sharing is self-enforcing, whenever the agents’ Euler constraints
are violated at B′ = B = 0 for some income distribution and r = 1/β− 1. If the initial
level of assets is above B̂, then aggregate assets stay constant at that level.

Proof. First, from Corollary 1 we know that the planner’s Euler constraint, (24), is violated
under the assumption that the agents’ Euler constraints are violated at B′ = B = 0 for
some x′ = x̂, where x̂ is included in the long run ergodic set of relative Pareto weights.
Therefore, B′(0, x̂) > 0. It is easy to see that there exists a high level of inherited assets,
denoted B̂, such that perfect intertemporal insurance is at least temporarily enforceable, that
is, x1

(
B̂
)
≥ xN

(
B̂
)
. Therefore, B′ (B, x′) < B for all B ≥ B̂ and x1 (B) ≥ x′ ≥ xN (B),

i.e. assets have to optimally decrease, because r < 1/β − 1 by assumption. This implies that
assets are bounded above in the long run.
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For part (i), we first show that there exists a unique constant level of assets, B∗, such
that all optimality conditions are satisfied. Afterwards, we will show that assets converge
almost surely to B∗ starting from any initial level, B0.

First, recall that if aggregate assets are constant, the optimal intervals for the relative
Pareto weight are time invariant. Given that each agent’s participation constraint binds
only for the highest income level in the long run, the optimality condition (26) and xN(B∗)

uniquely determine ch(B∗), the time-invariant ‘high’ consumption level. Then, using the
planner’s Euler, we can determine the unique level of B∗ such that all optimality conditions
are satisfied. The planner’s Euler is

u′
(
ch (B∗)

)
= β(1 + r)

[
(1− πe)u′

(
ch (B∗)

)
+ πeu′

(
cl (B∗)

)]
.

Dividing both sides by u′
(
ch (B∗)

)
, we obtain

1 = β(1 + r)

[
(1− πe) + πe

u′
(
cl (B∗)

)
u′ (ch (B∗))

]
= β(1 + r)

[
(1− πe) + πexN (B∗)

]
, (33)

where we have used (26). Note that xN (B∗) is monotone and continuous in B∗. Further, at
B∗ = 0 the right hand side of equation (33) is larger than 1 by assumption, and at B∗ = B̂

the right hand side of (33) is smaller than 1, because xN(B̂) = 1 and B∗ < B̂. Therefore, we
know that there exists a unique B∗ where the planner’s Euler is exactly satisfied by setting
B′ = B = B∗.

Next, we show that assets converge almost surely to B∗ starting from any initial asset
level, B0. We already know that B′(B0, x

′) < B0 for the ergodic range of x′ when B0 > B̂,
i.e. when perfect risk sharing is (temporarily) self-enforcing, and B′(0, x′) > 0 for some x′ in
the ergodic range of x′, since we have assumed that agents’ Euler constraints are binding in
the basic model. Consider B∗ < B0 < B̂ first, and assume that state N occurs, and agent 1’s
participation constraint is binding. This is without loss of generality, because this occurs with
probability 1 in the long run, and the problem is symmetric across the two agents. We know
that the right hand side of (33) is smaller than 1, because xN (B0) < xN (B∗). Therefore,
marginal utility tomorrow has to increase relative to marginal utility today to satisfy the
planner’s Euler, therefore B′(B0) < B0. What happens next period? The participation
constraint will bind again even if the same state occurs.10 This is because B′(B0) < B0

implies xN (B′(B0)) > xN (B0). Then assets will decrease again. What if some sj with
10Note that this never happens in the basic model.
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2 ≤ j ≤ N − 1 occurs? We know that the participation constraints in these states are
not binding for any B ≥ B∗, because they are not binding for B∗. This means that now
x′ = x = xN (B0) < xN (B′(B0)). Then, by Lemma 5, storage will be lower than when the
participation constraint is binding. Note that if states s2, ..., SN−1 occur repeatedly, assets
will converge to a level below B∗. Then we are in the case where B0 < B∗, that we study
next.

Consider 0 ≤ B0 < B∗ now, and suppose again that state N occurs, and agent 1’s
participation constraint is binding. We know that xN (B0) > xN (B∗) in this case. Using
(33) again, it follows that B′(B0) > B0. Now, if the same state occurs tomorrow (in fact,
any sj with j ≥ 2), then the participation constraint will be slack. This means that now
x′ = x = xN (B0) > xN (B′(B0)). Then, by Lemma 5, storage will be higher than when
the participation constraint is binding. This also implies that if state s1 does not occur for
many periods, assets converge to a level above B∗. Then once s1 occurs, which happens with
probability 1 in the long run, we are back to the case B0 > B∗, and assets start decreasing.11

To see part (ii), consider the case where in the long run there is a third state in which
a participation constraint binds. In this case, each agent’s consumption takes at least four
different values in the long run. These have to satisfy an additional participation constraint,
an additional resource constraint, and an additional Euler, which is generically impossible
for constant B.

To see part (iii), note that when β(1 + r) = 1, the only way to satisfy agents’ Euler
constraints in all states is to provide them with a perfectly smooth consumption stream
over time. Further, as long as a participation constraint binds given B, the planner has an
incentive to save more, because she does not face a trade-off between improving risk sharing
and using an inefficient intertemporal technology. If the B0 is higher than the minimum level
necessary to satisfy all participation constraints, B′ = B clearly satisfies both the agents’
and the planner’s Euler constraints, thus assets will remain constant at B0 ≥ B̂.

Proposition 5 says that aggregate assets will be constant in the long run if the cross-
sectional consumption distribution does not change over time. This is what happens not just
when consumption takes only one value, but also when it takes two values in the long run.
In the latter case half the agents consume ch and the other half consume cl in each period,
only the identity of the agent with ch changes over time. The social planner trades off two

11Participation constraints in more states may be binding when B is low, even if they only bind in states
s1 and sN for B∗. We know that assets will increase in the two most unequal states when B < B∗, therefore
with probability 1 assets will reach a level where the participation constraints of the other states are no longer
binding.
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effects of increasing aggregate storage: it is costly because β(1 + r) < 1, but it is beneficial
because it reduces consumption dispersion in the future and discourages private storage. The
steady-state level of assets just balances these two opposing forces.

When participation constraints bind in more states, and consumption has to take more
than two values, the cross-sectional consumption distribution will change over time. Thus,
the relative strength of these forces also changes over time, implying that assets remain
stochastic in the long run. The following proposition shows how exactly public storage varies
with the income and consumption distribution.

Proposition 6. B′(sj, B, x) ≥ B′(sk, B, x), ∀(B, x), where j ≥ N/2 + 1, k ≥ N/2, and
j > k. The inequality is strict, i.e. B′(sj, B, x) > B′(sk, B, x), if the optimal intervals for
states sj and sk do not overlap given B. That is, given inherited assets and the relative
Pareto weight last period, aggregate storage is greater when consumption inequality is higher.

Proof. From Lemma 4 we know that B′(sj, B, x) = B′(B, x′). If j > k, and the optimal
intervals for these two states do not overlap given B, then x′ must be higher in state sj than
in state sk. Then, the result follows from Lemma 5. If the optimal intervals overlap given
B, then there exists x for which x′ = x in both states sj and sk. It is clear that aggregate
savings are identical in the two states in this case.

Note that Proposition 6 is relevant both in the long run in the case where assets remain
stochastic, and in the short run in all cases before assets converge to B∗.

Figure 3 illustrates the short-run dynamics of assets in the case where assets are constant
in the long run. The solid (blue) line represents B′

(
B, xN(B)

)
, i.e. we compute B′ assuming

that the relevant participation constraint is binding. Suppose that state N occurs when
inherited assets are at the level B0 < B∗. Then public storage will be B′

(
B0, x

N(B0)
)
. Next

period, if any state sj with j ≥ 2 occurs, no participation constraint is binding, thus assets
will be B′

(
B, xN (B0)

)
> B′

(
B, xN (B)

)
. This is represented by the dot-dashed (red) line.

As long as state s1 does not occur, assets stay on this line and eventually converge to the
level B̃ > B∗. Now, assume that state s1 occurs when inherited assets are B̃. By symmetry,
storage will be B′

(
B̃, xN

(
B̃
))

. Next period, if either state s1 or sN occurs, the participation
constraint binds again, and assets follow the solid (blue) line. If any other state occurs, assets
will decrease more, and if this continues happening, assets will approach a level lower than
B∗ (not represented).

We now characterize the bounds of the stationary distribution of assets when they are
stochastic in the long run. Let B

(
B
)
denote the lower (upper) limit of the stationary

distribution of assets.
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Figure 3: Short-run asset dynamics when assets are constant in the long run

Proposition 7. The lower limit of the stationary distribution of aggregate assets, B, is either
strictly positive and is implicitly given by

u′ (cm (B)) = β(1 + r)
N∑
j=1

πj
u′ (cj (B, xm (B)))

1− υj (B, xm (B))
, (34)

where the upper index m refers to the least unequal income state, or is zero, and the Euler
constraint above holds as strict inequality. The upper limit of the stationary distribution of
aggregate assets, B, is implicitly given by

u′
(
cN
(
B, xN (B)

))
= β(1 + r)

N∑
j=1

πju′
(
cj
(
B, xN (B)

))
. (35)

Proof. From Proposition 6 it is clear that B will be approached if the least unequal income
state, denoted sm,12 happens repeatedly, while B can only be approached with state sN (or

12Note that sm refers to two states when N is even, sN/2 and sN/2+1.
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s1) happening many times in a row.
If B is part of the stationary distribution, then it must be that B ≥ B. This means that

there are less and less resources available over time while assets approach B, thus the relevant
participation constraint will always bind along this path. Therefore, x′ = xm(B) along this
path, and the planner’s Euler is (34) if B > 0, or B = 0.13

The upper limit of the stationary distribution, B, is approached from below, thus along
that path, the relevant participation constraint is slack.14 As a result, when B converges to
its upper limit, x̃ ≡ x′ = xh(B1) where B1 is the level of inherited assets when we switched
to state sN (or s1). Denote by B̃ a level of assets where B might converge to from below
when state sN occurs many times in a row. B̃ is the solution to the following system:

u′
(
c1
(
B̃, x̃

))
u′
(
cN
(
B̃, x̃

)) = x̃

cN
(
B̃, x̃

)
+ c1

(
B̃, x̃

)
= Ȳ + rB̃

u′
(
cN
(
B̃, x̃

))
= β(1 + r)

N∑
j=1

πju′
(
cj
(
B̃, x̃

))
. (36)

When is B̃ equal to B, the upper limit of the stationary distribution? Using Lemma 5, we
know that B′(B, x̃) is highest when x̃ is highest. At which asset level B1 within the stationary
distribution of assets should we switch to state sN in order to have x̃ = xN(B1) the highest
possible? This happens when B1 is at the lower limit of the stationary distribution, i.e. when
B1 = B. In that case, x̃ = xN (B). Then, replacing for x̃ in (36) gives (35).

Figure 4 illustrates the dynamics of aggregate assets in the case where they are stochastic
in the long run. For simplicity, we consider three income states. This means that there are
two types of states: two with high income and consumption inequality (states sh and sl) and
one with low income and consumption inequality (state sm). The solid (red) line represents
B′
(
B, xh(B)

)
, i.e. storage in state sh (or sl) when the relevant participation constraint is

binding. Similarly, the dot-dashed (blue) line represents B′ (B, xm(B)), i.e. storage in state
sm when the relevant participation constraint is binding. Starting from B0, if state sm

occurs repeatedly, assets converge to the lower limit of the stationary distribution, B. The
relevant participation constraint is always binding along this path, because inherited assets

13We will give an example for each of these cases in the next section, where we present some computed
examples.

14It will become clear that the upper limit is reached if state sN or state s1 occurs many times in a row,
but not if the economy alternates between these two states.
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keep decreasing. The dashed (green) line represents the scenario when state sh (or state sl)
occurs when inherited assets are at the lower limit of the stationary distribution, B, and
then the same state occurs repeatedly. This is when assets will approach the upper limit
of the stationary distribution, B. The relevant participation constraint is not binding from
the period after the switch to sh, therefore storage given inherited assets is described by
the function B′

(
B, xh(B)

)
. Finally, without loss of generality assume that state sl occurred

many times while approaching B, and suppose that state sh occurs when inherited assets are
(close to) B. In this case, x′ = xh

(
B
)
< xh (B), and assets will decrease. They will then

converge to a level B̃ from above with the relevant participation constraint binding along
this path. The same will happen whenever B > B̃ when we switch to state sh (or sl). B̃ is
implicitly given by

u′
(
ch
(
B̃
))

= β(1 + r)
N∑
j=1

πju′
(
cj
(
B̃, xh

(
B̃
)))

.

4.1.2 The dynamics of individual consumptions

Having characterized assets, we now turn to the dynamics of consumption. One key property
of the basic model is that whenever either agent’s participation constraint binds (υ1(X) > 0

or υ2(X) > 0), the resulting allocation is independent of the preceding history. In our
formulation, this implies that x′ is only a function of sj and the identity of the agent with
a binding participation constraint. This is often called the amnesia property (Kocherlakota,
1996), and typically data do not support this pattern, see Broer (2011) for the United States
and Kinnan (2011) for Thai villages. Allowing for storage helps to bring the model closer to
the data in this respect.

Proposition 8. The amnesia property does not hold when aggregate assets are stochastic in
the long run.

Proof. x′ and hence current consumption depend on both current income and inherited
assets, B, when a participation constraint binds. This implies that the past history of income
realizations affects current consumption through B.

Another property of the basic model is that whenever neither participation constraint
binds (υ1(X) = υ2(X) = 0), the consumption allocation is constant and hence exhibits an
extreme form of persistence. This can be seen easily: (27) gives x′ = x, and the consumption
allocation is only a function of x′ with constant aggregate income. This implies that for

32



Figure 4: Asset dynamics when assets are stochastic in the long run

‘small’ income changes which do not trigger a participation constraint to bind, we do not see
any change in individual consumptions. It is again not easy to find evidence for this pattern
in the data. In our model, even if the relative Pareto weight does not change, (21) does not
imply that individual consumptions will be the same tomorrow as today. This is because
(1 + r)B − B′(X) is generically not equal to (1 + r)B′ − B′′(X ′) when assets are stochastic
in the long run.

Proposition 9. The persistence property does not hold when aggregate assets are stochastic
in the long run.

Proof. Even though x′ = x, when neither participation constraint binds, consumption is only
constant if net savings are identical in the past and the current period. This is not the case
when B is stochastic.

The last two propositions imply that the dynamics of consumption in the our model are
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richer and closer to the data than in the basic model. It is also important to note that, for
developed economies, the Euler constraint cannot be rejected in micro data, at least in its
inequality form, once labor supply decisions and demographics are appropriately accounted
for (see Attanasio (1999) for a comprehensive review of the literature). Since in our model
agents’ Euler inequality is satisfied by construction, we bring limited commitment models in
line with this observation as well.

4.2 Validity of the first-order condition approach

Until now we have assumed that by introducing the agents’ participation and Euler con-
straints (equations (16) and (17), respectively) in Problem P1, we guarantee incentive com-
patibility. In other words, we have assumed that the constrained-optimal allocation can be
obtained by checking that agents have no incentive to default given that they do not save,
and that they have no incentive to save given that they do not default. In principle, they
may still find it optimal to use more complicated ‘double’ deviations involving both storage
and default, potentially in different time periods, given some history of income shocks.

First, we need to consider contemporaneous joint deviations: the agent defaults and saves
at the same time.15 Since in the participation constraint (16) we use Ũau

i (st), the value of
autarky when the agent can save (see equation (19)), this contemporaneous double deviation
is already taken into account. Further, note that in autarky the agent is allowed to save
whenever this makes him better off. Therefore, the ‘default today and save later’-type of
double deviations are already taken care of as well. This implies that the only potentially
profitable double deviations we still need to consider are those which involve private asset
accumulation first and default in a later period.

We demonstrate that such deviations cannot be profitable in the simplest possible case:
only two consumption levels occur in the long run, ch and cl with ch > cl and switching
probability πe. It is not difficult to generalize the argument for more consumption levels.
Let V h denote the expected lifetime utility of an agent who consumes ch today. Since ch is
pinned down by the binding participation constraint of agents when their income reaches its
highest level, we know that V h = V au

1

(
sN , 0

)
, where V au

i () is defined in equation (19).
Now, we formally define the problem of an agent who is facing this consumption process

and has the option of storing today and defaulting later. We denote the value function
15In the literature with private information, a similar joint deviation, shirking (or reporting a lower income)

and saving, is the relevant deviation. Detailed discussion of these joint deviations can be found for the hidden
action (dynamic moral hazard) case in Kocherlakota (2004) and Ábrahám, Koehne, and Pavoni (2011), and
for the hidden income case in Cole and Kocherlakota (2001).
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for an agent who is entitled to receive ch (cl) in the current period, has b units of assets
accumulated, and decides not to default today by W h(b) (W l(b)). These value functions are
defined recursively as

W h(b) = max
b′≥0

{
u(ch + (1 + r)b− b′) + β

[
N∑
j=2

πj max{W h(b′), V au
1

(
sj, b′

)
}

1

2
+ π1 max{W l(b′), V au

1

(
s1, b′

)
}
]}

(37)

and

W l(b) = max
b′≥0

{
u(cl + (1 + r)b− b′) + β

[
N−1∑
j=1

πj max{W l(b′), V au
1

(
sj, b′

)
}

1

2
+ πN max{W h(b′), V au

1

(
sN , b′

)
}
]}

. (38)

We define the solution of the above optimization problems as gh(b) and gl(b), respectively.

Lemma 6. gh(0) = 0. That is, the agent assigned to consume ch today will not save, even if
defaulting later is an option.

Proof. Assume indirectly that gh(0) > 0, that is, the agent saves today but does not default.
Two cases are possible: either (i) the agent defaults in some state(s) tomorrow, or (ii) the
agent does not default in any state tomorrow but he does later.

In case (i), the agent must default when his income is the highest possible tomorrow, i.e.
when he earns yN . Let cau(yj, b) denote the consumption level chosen by the agent in autarky
given that his income is yj and he has accumulated savings b. Remember that πe = πN = π1.
Storing gh(0) today and defaulting tomorrow if his income is yN , the agent’s Euler inequality
is

u′
(
ch − gh(0)

)
= β(1 + r)

[
πeu′

(
cau
(
yN , gh(0)

))
+ (1− 2πe)u′

(
ch + (1 + r)gh(0)− gh

(
gh(0)

))
(39)

+πeu′
(
cl + (1 + r)gh(0)− gl

(
gh(0)

))]
,

We will show that the agent would want to ‘borrow’ given this consumption path, which he
can do by reducing gh(0). Given that

u′
(
ch
)

= β(1 + r)
[
(1− πe)u′

(
ch
)

+ πeu′
(
cl
)]
,

a sufficient condition for this is that cau
(
yN , gh(0)

)
> ch, ch + (1 + r)gh(0)− gh

(
gh(0)

)
> ch,

and cl+(1+r)gh(0)−gl
(
gh(0)

)
> cl. Consumption cannot decrease in the agent’s ‘income,’ i.e.
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it cannot be that he chooses a consumption lower than cj when he has access to cj+(1+r)gh(0)

units of the consumption good rather than only cj units. To see the first condition, we
first show that cau

(
yN , 0

)
> ch. Assume indirectly that this is not true. Given that the

participation constraint holds with equality when the agent’s income is yN , this implies that
the benefits of being in the risk sharing arrangement occur today while its costs occur in
the future relative to autarky. This in turn implies that risk sharing must increase when the
discount factor decreases. This contradicts the folk theorem. Recall that in Proposition 5
we have shown that as β increases to a level such that β(1 + r) = 1, perfect risk sharing
is the long-run outcome. Intuitively, a higher β means a better enforcement technology in
models of risk sharing with limited commitment. Now, clearly, cau() is increasing in its second
argument, therefore we also know that cau

(
yN , gh(0)

)
> ch holds for any gh(0) ≥ 0. This

means that (39) is a strict inequality, thus the agent wishes to increase current consumption,
which he can do by reducing gh(0). A similar argument can be used if the agent would want
to default in more states tomorrow.

In case (ii), substituting in the future Euler equations, we can use an almost identical
argument as above. For example, take the case when the agent would save in period 0 and 1

and default in the high state in period 2 only if the income delivered by the optimal allocation
(ch) remains high in both periods. The Euler equation in period 0 is

u′
(
ch − gh(0)

)
= β(1 + r)

[
(1− πe)u′

(
ch + (1 + r)gh(0)− gh

(
gh(0)

))
(40)

+πeu′
(
cl + (1 + r)gh(0)− gl

(
gh(0)

))]
.

When the current state is h, the Euler equation in period 1 is

u′
(
ch + (1 + r)gh(0)− gh

(
gh(0)

))
= β(1 + r)

[
πeu′

(
cau
(
yN , gh

(
gh(0)

)))
(41)

+ (1− 2πe)u′
(
ch + (1 + r)gh

(
gh(0)

)
− gh

(
gh
(
gh(0)

)))
+πeu′

(
cl + (1 + r)gh

(
gh(0)

)
− gl

(
gh
(
gh(0)

)))]
,

and when the current state is l, it is

u′
(
cl + (1 + r)gh(0)− gl

(
gh(0)

))
= β(1 + r)

[
πeu′

(
ch + (1 + r)gl

(
gh(0)

)
− gh

(
gl
(
gh(0)

)))
(42)

+ (1− πe)u′
(
cl + (1 + r)gl

(
gh(0)

)
− gl

(
gl
(
gh(0)

)))]
.

Using equations (41) and (42) to substitute for the marginal utilities on the right hand side
of (40) gives the two-period ahead Euler equation in this case. Note that when the agent
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neither saves nor defaults for two periods, the two-period ahead Euler equation is given by

u′
(
ch
)

= β(1 + r)
[
(1− πe) β(1 + r)

(
(1− πe)u′

(
ch
)

+ πeu′
(
cl
))

(43)

+πeβ(1 + r)
(
(1− πe)u′

(
cl
)

+ πeu′
(
ch
))]

.

Now, comparing the right hand sides of (40) after substitution and (43) term by term we can
use practically the same argument as above to show that gh(0) = 0.

Proposition 10. The first-order condition approach is valid.

Proof. The first-order condition approach is valid if V h = W h(0), V l = W l(0), and gh(0) =

gl(0) = 0. It is easy to see that gl(0) = 0. Lemma 6 shows that gh(0) = 0. Replacing these
solutions into (37) and (38), the first two conditions follow.

4.3 Computation

We use the recursive system given by equations (26)-(31) to solve the model numerically. We
discretize x and B (y is assumed to take a finite number of values). We have to determine
x′ and B′ on a 3-dimensional grid on X. The initial values for V ′(X ′), c1(X ′), and υ1(X

′)

are from the solution of a model where the participation constraints are ignored. We iterate
until the value and policy functions converge.

As we proceed, we use the characteristics of the solution. In particular, we know that
if agent 1’s participation constraint binds at x̃, it will bind at all x < x̃. Similarly, if agent
2’s participation constraint binds at x̂, it will bind at all x > x̂. At each iteration, at each
income state and for each B, we solve directly for these limits, using (29) and (30) with
equality in turn, first assuming that B′ = 0. Afterwards, we check whether the planner’s
Euler is satisfied at the limits. If not, we solve a 2-equation system of (29) (or (30)) and (28)
with equality, with unknowns (x′, B′). Finally, we solve for a new B′ at points on the x grid
where neither participation constraint binds, i.e. at the interior of the optimal interval of the
current iteration.

4.4 Decentralization

Note that public storage can be thought of as a form of capital, B units of which pro-
duce Y + (1 + r)B units of output tomorrow and which fully depreciates. Ábrahám and
Cárceles-Poveda (2006) show how to decentralize a limited commitment economy with cap-
ital accumulation which is very similar to the one studied in this paper. In particular, they
introduce competitive intermediaries and show that a decentralization with endogenous debt
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constraints that are ‘not too tight’ (that make the agents just indifferent between defaulting
and participating), as in Alvarez and Jermann (2000), is possible. In that environment, how-
ever, they use a neoclassical production function where wages depend on aggregate capital.
This implies that there the value of autarky depends on aggregate capital as well.16 Ábrahám
and Cárceles-Poveda (2006) show that if the intermediaries are subject to endogenously de-
termined capital accumulation constraints, then this externality can be taken into account,
and the constrained-efficient allocation can be decentralized as a competitive equilibrium.17

In our model, however, public storage does not affect the outside option of the agents.
Hence, the results above directly imply that a competitive equilibrium corresponding to the
constrained-efficient allocation exists. In particular, households trade in Arrow securities
subject to endogenous borrowing constraints that prevent default, and intermediaries also
sell these Arrow securities to build up public storage. The key intuition is that equilibrium
Arrow security prices take into account binding future participation constraints, as these
prices are given by the usual pricing kernel. Moreover, agents will not hold any ‘shares’ in
public storage, hence their autarky value will be unaffected. Finally, no arbitrage or perfect
competition will make sure that the intermediaries make zero profits in equilibrium.

5 Computed examples

In this section we use the above algorithm to solve for efficient allocations in economies with
limited commitment and access to hidden storage. We show that aggregate savings due to
the planner’s desire to complete markets can be significant in magnitude. We also illustrate
the role of the discount factor, β, and the return on storage, r.

To do this, we consider five scenarios, four with β(1 + r) < 1 and one with β(1 + r) = 1

to study the benchmark of an efficient storage technology as well. In each case agents’ per-
period utility function is of the the CRRA form with a coefficient of relative risk aversion
equal to 1, i.e. u() = ln(). Income of both agents is i.i.d. over time, and may take three
values, {0.2, 0.5, 0.8}, with equal probabilities. Remember that income is perfectly negatively
correlated across the two agents, thus aggregate income is 1 in all three states. When β(1 +

r) < 1, the discount factor may take two values, 0.8 and 0.7, and the interest rate may take
two values as well, 0.16 and 0.11. In addition, we consider the case β = 0.8 and r = 0.25.

For the basic model, we determine agents’ value of autarky allowing them to save. This
16This is also the case in the two-country production economy model of Kehoe and Perri (2004).
17Chien and Lee (2010) achieves the same objective by taxing capital instead of using a capital accumulation

constraint.
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means that agents’ outside option is the same in the basic model and our model, thereby we
can focus on the effect of storage in equilibrium. In all five scenarios, the solution of the basic
model is characterized by partial insurance. In one scenario (β = 0.8, r = 0.11), consumption
takes only two values in the long run, while it takes four values in the other four scenarios.
Table 1 shows the stationary distribution of consumption for the basic model. Further, in
all five cases, agents would want to save at the solution of the basic model. That is, hidden
storage matters. Therefore, the planner will save in our model.

Table 1: Stationary distribution of consumption in the basic
model with storage in autarky, percent of aggregate income

β 0.8 0.8 0.8 0.7 0.7

r 0.25 0.16 0.11 0.16 0.11

ch 80.00 80.00 59.51 80.00 64.84

cm 54.30 51.85 59.51 50.07 57.96

cm 45.70 48.15 40.49 49.93 42.04

cl 20.00 20.00 40.49 20.00 35.16

In all cases u() = ln() and income may take three values, {0.2, 0.5, 0.8}, with
equal probabilities.

Now we turn to the results from our model with storage. First, let us look at the behavior
of assets in the long run. Table 2 shows the limits of the stationary distribution of assets.
As noted above, assets reach their minimum if state sm occurs repeatedly, while they reach
their maximum if state sh (or state sl) occurs many times in a row, and given that when we
switch to either of the unequal states assets were at their minimum.

Table 2: Stationary distribution of assets, percent of
aggregate income

β 0.8 0.8 0.8 0.7 0.7

r 0.25 0.16 0.11 0.16 0.11

B max {B0, 36.97} 16.56 2.90 7.41 1.38

B 36.97 16.56 2.90 6.43 0.00

In all cases u() = ln() and income may take three values,
{0.2, 0.5, 0.8}, with equal probabilities. B0 is the initial level of
aggregate assets.

When the discount factor is high (β = 0.8), the participation constraints in state sm do
not bind in the long run for any of the interest rates considered here. As a result assets are
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constant in the long run, as Proposition 5 states. When the storage technology is efficient
(r = 0.25), assets reach 36.97 percent of aggregate income in the long run, if the initial level
of assets B0 ≤ 36.97. Else, assets stay constant at their initial level. When β(1 + r) < 1

but the interest rate is still relatively high (r = 0.16), the planner’s savings amount to 16.56
percent of aggregate income. Note that the presence of storage relaxes the participation
constraints sufficiently so that they do not bind in state sm, unlike in the basic model. When
the interest rate is relatively low (r = 0.11), savings are 2.90 percent of aggregate income.

When the discount factor is low (β = 0.7), participation constraints bind in all three
states, and assets remain stochastic in the long run. When the interest rate is relatively high
(r = 0.16), savings by the planner to make sure agents do not want to save and to improve
risk sharing in the future vary between 6.43 and 7.41 percent of aggregate income. When the
interest rate is relatively low (r = 0.11), savings vary between 0 and 1.38 percent. This last
example shows that 0 can be part of the stationary distribution of aggregate assets.

In terms of how much risk sharing is achieved, an increase in the interest rate reduces risk
sharing in the basic model, since it raises the value of autarky, see Table 1. In contrast, a
higher return on storage improves risk sharing in our model, see Table 3. The benefits from
aggregate storage outweigh the negative effect of the increase in the value of agents’ outside
option.

Table 3: Stationary distribution of consumption, percent of aggregate income

β 0.8 0.8 0.8 0.7 0.7

r 0.25 0.16 0.11 0.16 0.11

ch 54.62 56.67 58.14 [62.94, 63.41] [63.97, 64.61]

cm 54.62 56.67 58.14 [59.73, 60.57] [57.81, 59.24]

cm 54.62 45.97 42.18 [41.20, 41.30] [41.91, 42.19]

cl 54.62 45.97 42.18 [37.50, 38.48] [35.19, 36.18]

In all cases u() = ln() and the income may take three values, {0.2, 0.5, 0.8}, with equal
probabilities.

The role of the discount factor is the same in our model with storage as in the basic
model. In particular, a higher β implies more risk sharing. In the benchmark case where
β = 0.8 and r = 0.25, i.e. when the storage technology is efficient, perfect risk sharing is
self-enforcing in the long run. This is because in this case there is no trade-off between the
two inefficiencies, namely, imperfect risk sharing and an inferior intertemporal technology.

When the discount factor is low (β = 0.7), consumption depends on inherited assets,
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which in turn depend on the history of income shocks. As a result, the amnesia and persistent
properties do not hold in the long run in these examples. The variation of consumption is
small with a maximum of 2.8 percent in state sl when β = 0.7 and r = 0.11.

6 Concluding remarks

This paper has shown that some implications of the basic limited commitment model with
no private or public storage are not robust to hidden storage. When public storage is allowed
though, the incentive for private storage is eliminated in the constrained-optimal allocation.
The intertemporal technology is used in equilibrium even though there is no aggregate uncer-
tainty and the return is lower than the discount rate, i.e. β(1 + r) < 1. The planner saves for
two reasons. She saves to eliminate agents’ incentives to use their hidden storage technology.
When income inequality is not the highest, the planner has more incentive to save than the
agents. The reason for additional storage by the planner is that public assets relax future
participation constraints, and thus improve risk sharing.

We have also shown that aggregate assets may be stochastic in the long run. This happens
when each agent’s participation constraint binds at more than one income level, i.e. when
cross-sectional consumption inequality varies over time. Given inherited assets, public storage
is higher when consumption inequality is higher. Finally, the dynamics of consumption
is richer in our model compared to the basic model without storage. In particular, the
amnesia and persistence properties do not hold in general, which brings limited commitment
models closer to the data (Broer, 2011). Further, in our model agents’ Euler constraints
in inequality form hold by construction, which is consistent with empirical evidence from
developed countries (Attanasio, 1999).

The literature on incomplete markets either exogenously restrict asset trade, most promi-
nently by allowing only a risk-free bond to be traded (Huggett, 1993; Aiyagari, 1994), or
considers a deep friction that limits risk sharing endogenously. The literature has focused on
two such frictions, namely limited commitment and private information. This paper merges
these two strands of the incomplete markets literature by allowing for state-contingent trading
subject to a deep friction and a self-insurance opportunity at the same time. This has been
done when the deep friction is hidden income or effort (Allen, 1985; Cole and Kocherlakota,
2001; Ábrahám, Koehne, and Pavoni, 2011), but not in the case where the deep friction is
lack of commitment, to our knowledge.

Comparing our model with limited commitment and hidden storage to models with hidden
income or effort and hidden storage points to remarkable differences. In our model, if the
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same storage technology is available to the planner and the agents, welfare is improved.18 In
contrast, in models with hidden income/effort, public storage is never used and the presence
of the hidden storage opportunity reduces welfare. This is because in our model saving by
the planner both improves insurance and relaxes the incentive problem, by relaxing future
participation constraints; while in the hidden income/effort context the incentive problem
is made more severe by additional self-insurance, and aggregate asset accumulation makes
incentive provision more expensive.

Our model could be applied in several economic contexts. The model predicts that risk
sharing among households in villages can be improved by a public grain storage facility.
Cooperation among partners in a law firm, for example, is facilitated by common assets
that someone quitting the partnership has no access to. Marriage contracts may specify that
some commonly held assets are lost by the spouse who files for divorce. Finally, supranational
organizations may help international risk sharing by simply having a jointly held stock of
assets. The European Financial Stability Facility and the European Stability Mechanism
may serve this purpose. Future work should study the quantitative implications of saving
using some of these applications.

18The planner and the agents can always choose zero assets. Given that in the constrained-optimal alloca-
tion the planner has strictly positive assets (at least in some periods), welfare strictly improves.
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